Density Functional Theory Calculations for Spin Crossover Complexes

  • Chapter
Spin Crossover in Transition Metal Compounds III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 235))

Abstract

Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are compared with wavefunction-based methods like the Hartree-Fock approach. Some recent applications of DFT to spin crossover complexes are reviewed, e.g., the calculation of Mössbauer parameters, of vibrational modes and of differences of entropy, vibrational energy, and total electronic energy between high-spin and low-spin isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hauser A (2003) Top Curr Chem (this volume)

    Google Scholar 

  2. Winkler H, Chumakov AI, Trautwein AX (2003) Top Curr Chem (this volume)

    Google Scholar 

  3. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford University Press, New York

    Google Scholar 

  5. Ernzerhof M, Perdew JP, Burke K (1996) Top Curr Chem 180:1

    Google Scholar 

  6. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383

    Google Scholar 

  7. Jones RO, Gunnarson O (1989) Rev Mod Phys 61:689

    Google Scholar 

  8. Chermette H (1998) Coord Chem Rev 178/180:699

    Google Scholar 

  9. Dreizler RM, Gross EKV (1990) Density functional theory: an approach to the many-body problem, 1st edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Hohenberg P, Kohn W (1964) Phys Rev 136B:864

    Google Scholar 

  11. Handy NC (1994) Density functional theory. In: Roos BO (ed) Notes in quantum chemistry II. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Hartree DR (1928) Proc Cambridge Phil Soc 24:111

    Google Scholar 

  13. Jensen F (1998) Introduction to computational chemistry, 1st edn. Wiley, NewYork

    Google Scholar 

  14. Dunning TH Jr (1989) J Chem Phys 90:1007

    Google Scholar 

  15. Radzig AA, Smirnov BM (1985) Reference data on atoms, molecules, and ions. Springer Series in Chemical Physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Slater JC (1951) Phys Rev 81:385

    Google Scholar 

  17. Schwartz K (1972) Phys Rev B 5:2466

    Google Scholar 

  18. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Google Scholar 

  19. Geldart DJW (1996) Top Curr Chem 180:31

    Google Scholar 

  20. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  22. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Google Scholar 

  23. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16,533

    Google Scholar 

  24. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  26. Stevens PJ, Devlin JF, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11,623

    Google Scholar 

  27. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Inorg Chem 40:2201

    Google Scholar 

  28. Paulsen H, Duelund L, Zimmermann A, Averseng F, Gerdan M, Winkler H, Toftlund H, Trautwein AX (2003) Monatsh Chem 134:295

    Google Scholar 

  29. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48

    Google Scholar 

  30. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729

    Google Scholar 

  31. Grünsteudel H, Paulsen H, Meyer-Klaucke W, Winkler H, Trautwein AX, Grünsteudel HF, Baron AQR, Chumakov AI, Rüffer R, Toftlund H (1998) Hyperfine Interact 113:311

    Google Scholar 

  32. Paulsen H, Winkler H, Trautwein AX, Grünsteudel H, Rusanov V, Toftlund H (1999) Phys Rev B 59:975

    Google Scholar 

  33. Hoefer A (2001) Vibrational spectroscopy on thermally and optically switchable spin crossover compounds. Cuvillier, Göttingen

    Google Scholar 

  34. Paulsen H, Benda R, Herta C, Schünemann V, Chumakov AI, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Phys Rev Lett 86:1351

    Google Scholar 

  35. Paulsen H, Grünsteudel H, Meyer-Klaucke W, Gerdan M, Winkler H, Toftlund H, Trautwein AX (2001) Eur Phys J B 23:463

    Google Scholar 

  36. Ronayne K (in preparation)

    Google Scholar 

  37. Brehm G, Reiher M, Schneider S (2002) J Phys Chem A 106:12,024

    Google Scholar 

  38. Reiher M (2002) Inorg Chem 41:6928

    Google Scholar 

  39. Gütlich P, Köppen H, Link R, Steinhäuser HG (1979) J Chem Phys 70:3977

    Google Scholar 

  40. Gütlich P, Hauser H, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  41. Gütlich P, Link R, Trautwein A (1978) Mössbauer spectroscopy and transition metal chemistry, 1st edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Long GJ, Grandjean F, Reger DL (2003) Top Curr Chem (this volume)

    Google Scholar 

  43. Jung J, Spiering H, Yu Z, Gütlich P (1995) Hyperfine Interact 95:107

    Google Scholar 

  44. Takemoto JH, Hutchinson B (1973) Inorg Chem 12:705

    Google Scholar 

  45. König E (1991) Struct Bond 76:51

    Google Scholar 

  46. Chumakov A, Rüffer R, Leupold O, Grünsteudel H, Barla A, Asthalter T (2000) ESRF Highlights-1999. ESRF, Grenoble

    Google Scholar 

  47. Baranovic G (2003) Chem Phys Lett 369:668

    Google Scholar 

  48. Berces A, Ziegler T (1996) Top Curr Chem 182:41

    Google Scholar 

  49. Chen G, Espinosa-Perez G, Zentella-Dehesa A, Silaghi-Dumitrescu I, Lara-Ochoa F (2000) Inorg Chem 39:3440

    Google Scholar 

  50. Chang H-R, McCusker JK, Toftlund H, Wilson SR, Trautwein AX, Winkler H, Hendrickson DN (1990) J Am Chem Soc 112:6814

    Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A7. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  52. Lmercier G, Verelst M, Bousseksou A, Varret F, Tuchagues J-P (1996) In: Kahn O (ed) Magnetism: a supramolecular function. Kluwer Academic, Dordrecht, p 335

    Google Scholar 

  53. Thiel A, Bousseksou A, Verelst M, Varret F, Tuchagues J-P (1999) Chem Phys Lett 302:549

    Google Scholar 

  54. Gallois B, Real J-A, Hauw C, Zarembowitch (1990) J Inorg Chem 29:1152

    Google Scholar 

  55. Toftlund H. Private communication

    Google Scholar 

  56. Schollmeyer D, Schmitt G, Gütlich P. Private communication

    Google Scholar 

  57. Al-Obaidi Ala HR, Jensen KB, McGarvey JJ, Toftlund H, Jensen B, Bell SEJ, Carroll JG (1996) Inorg Chem 35:5055

    Google Scholar 

  58. Sorai M, Seki S (1974) J Phys Chem Solids 35:555

    Google Scholar 

  59. Turner JW, Schultz FA (2001) Inorg Chem 40:5296

    Google Scholar 

Download references

Acknowledgements

This work was supported by the TMR project TOSS (ERB-EMRX-CT98-0199) and by the Deutsche Forschungsgemeinschaft within the priority programme “Molecular Magnetism”. We thank L. Duelund, A. Zimmermann, and H. Toftlund for the fruitful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Paulsen .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Paulsen, H., Trautwein, A.X. Density Functional Theory Calculations for Spin Crossover Complexes. In: Spin Crossover in Transition Metal Compounds III. Topics in Current Chemistry, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95428

Download citation

  • DOI: https://doi.org/10.1007/b95428

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40395-1

  • Online ISBN: 978-3-540-44984-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation