Spin Crossover in Iron(II) Tris(diimine) and Bis(terimine) Systems

  • Chapter
Spin Crossover in Transition Metal Compounds I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 233))

Abstract

Tris(diimine) and bis(terimine) iron(II) complex salts constitute one of the major classes of spin crossover systems. Both electronic and structural modifications can be made so as to bring the ligand field of the parent imines, 2,2′-bipyridine, 1,10-phenanthroline and 2,2′:6′,2″- terpyridine into the crossover range with some degree of confidence. The resulting imine systems are considered and classified according to their structural types. Among the many crossover systems in this class are several which display a high degree of cooperativity in the solid state, and the incorporation of hydrogen-bonding sites into the ligand structure also strongly influences many solid-state properties

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Orgel LE (1956) In: Quelques Problèmes de Chimie Minérale; 10 ème Conseil de Chimie, Bruxelles, p 325

    Google Scholar 

  2. Fisher DC, Drickamer HG (1971) J Chem Phys 54:4825

    Google Scholar 

  3. Robinson MA, Curry JD, Busch DH (1963) Inorg Chem 2:1178

    Google Scholar 

  4. Jørgensen CK (1955) Acta Chem Scand 9:1362

    Google Scholar 

  5. Henke W, Reinen D (1977) Z Anorg Allgem Chem 486:187

    Google Scholar 

  6. Shklover V, Nesper R, Zakeeruddin SM, Fraser DM, Grätzel M (1996) Inorg Chim Acta 247:237

    Google Scholar 

  7. James BR, Parris M, Williams RJP (1961) J Chem Soc 4630

    Google Scholar 

  8. Goodwin HA, Sylva RN (1968) Aust J Chem 21:83

    Google Scholar 

  9. Fleisch J, Gütlich P, Hasselbach KM (1977) Inorg Chem 16:1979

    Google Scholar 

  10. Hauser A, Adler J, Gütlich P (1988) Chem Phys Lett 152:468

    Google Scholar 

  11. Goodwin HA, Kucharski ES, White AH (1983) Aust J Chem 36:1115

    Google Scholar 

  12. Fujiwara T, Iwamoto E, Yamamoto Y (1984) Inorg Chem 23:115

    Google Scholar 

  13. Fleisch J, Gütlich P, Hasselbach KM (1976) Inorg Chim Acta 17:51

    Google Scholar 

  14. Onggo D, Goodwin HA (1991) Aust J Chem 44:1539

    Google Scholar 

  15. Onggo D, Hook JH, Rae AD, Goodwin HA (1990) Inorg Chim Acta 173:19

    Google Scholar 

  16. Harris CM, Kokot S, Patil HRH, Sinn E, Wong H (1972) Aust J Chem 25:1631

    Google Scholar 

  17. Constable EC, Seddon KR (1982) J Chem Soc Chem Comm 34

    Google Scholar 

  18. Craig, DC, Goodwin HA, Onggo D (1988) Aust J Chem 41:1157

    Google Scholar 

  19. Ernst S, Kaim W (1986) J Am Chem Soc 108:3578

    Google Scholar 

  20. Onggo D, Rae AD, Goodwin HA (1990) Inorg Chim Acta 178:151

    Google Scholar 

  21. Nelson J, Nelson SM, Perry WD (1976) J Chem Soc Dalton Trans 1282

    Google Scholar 

  22. Fitzpatrick LJ, Goodwin HA (1982) Inorg Chim Acta 61:229

    Google Scholar 

  23. Baker AT, Goodwin HA, Rae AD (1984) Aust J Chem 37:2431

    Google Scholar 

  24. Craig DC, Goodwin HA, Onggo D, Rae AD (1988) Aust J Chem 41:1625

    Google Scholar 

  25. Baker AT, Goodwin HA (1985) Aust J Chem 38:851

    Google Scholar 

  26. Renz F, Goodwin HA (unpublished results)

    Google Scholar 

  27. Harimanow LS, Sugiyarto KH, Craig, DC, Scudder ML, Goodwin HA (1999) Aust J Chem 52:109

    Google Scholar 

  28. Dosser RJ, Eilbeck WJ, Underhill AE, Edwards PR, Johnson CE (1969) J Chem Soc A 810

    Google Scholar 

  29. Sugiyarto KH, Craig DC, Rae AD, Goodwin HA (1995) Aust J Chem 48:35

    Google Scholar 

  30. Reeder KA, Dose EV, Wilson LJ (1978) Inorg Chem 17:1071

    Google Scholar 

  31. McGarvey JJ, Lawthers I (1982) J Chem Soc Chem Comm 906

    Google Scholar 

  32. Beattie JK, McMahon KJ (1988) Aust J Chem 41:1315

    Google Scholar 

  33. Sugiyarto KH, Goodwin HA (1987) Aust J Chem 40:775

    Google Scholar 

  34. Goodgame DML, Machado AASC (1969) J Chem Soc Chem Comm 1420

    Google Scholar 

  35. Hennig H, Benedix M, Benedix R (1971) Z Chem 11:188

    Google Scholar 

  36. Sugiyarto KH, Goodwin HA (1988) Aust J Chem 41:1645

    Google Scholar 

  37. Baker AT, Goodwin HA, Rae AD (1987) Inorg Chem 26:3513

    Google Scholar 

  38. Baker AT, Goodwin HA (1984) Aust J Chem 37:1157

    Google Scholar 

  39. Baker AT, Ferguson NJ, Goodwin HA, Rae AD (1989) Aust J Chem 42:623

    Google Scholar 

  40. a. Sasaki Y, Shigematsu T (1973) Bull Chem Soc Japan 46:3438; b. Sams JR, Tsin TB (1976) Inorg Chem 15:1544; c. Baker AT, Goodwin HA (1977) Aust J Chem 30:771; d. Boča R, Baran P, Dlháň L, Sima J, Wiesinger G, Renz F, El-Ayaan U, Linert W (1997) Polyhedron 16:47

    Google Scholar 

  41. Abushamleh AS, Goodwin HA (1979) Aust J Chem 32:513

    Google Scholar 

  42. König E, Ritter G, Kulshreshtha SK, Nelson SM (1982) Inorg Chem 21:3022

    Google Scholar 

  43. Burnett MG, McKee V, Nelson SM (1981) J Chem Soc Dalton Trans 1492

    Google Scholar 

  44. Boinnard D, Cassoux P, Petrouleas V, Savariault J-M, Tuchagues J-P (1990) Inorg Chem 29:4114

    Google Scholar 

  45. Charbonnière LJ, Williams AF, Piguet C, Bernardinelli G, Rivara-Minten (1998) Chem Eur J 4:485

    Google Scholar 

  46. Telfer SG, Bocquet B, Williams AF (2001) Inorg Chem 40:4818

    Google Scholar 

  47. Serr BR, Andersen KA, Elliott CM, Anderson OP (1988) Inorg Chem 27:4499

    Google Scholar 

  48. Piguet C, Rivara-Minten E, Bernardinelli G, Bünzli J-C G, Hopfgartner (1997) J Chem Soc Dalton Trans 421

    Google Scholar 

  49. Robinson MA, Busch DH (1963) Inorg Chem 2:1171

    Google Scholar 

  50. Wei HH, Hsiao CS (1981) J Inorg Nucl Chem 43:2299

    Google Scholar 

  51. Barth P, Schmauss G, Specker H (1972) Z Naturforsch B 27:1149

    Google Scholar 

  52. Maeda Y, Shite S, Takashima Y, Nishida Y (1977) Bull Chem Soc Jpn 50:2902

    Google Scholar 

  53. Baker AT, Goodwin HA (1985) Aust J Chem 38:207

    Google Scholar 

  54. Figgins PE, Busch DH (1961) J Phys Chem 65:2236

    Google Scholar 

  55. Epstein LM (1964) J Chem Phys 40:435

    Google Scholar 

  56. Renz F, Oshio H, Ksenofontov V, Waldeck M, Spiering H, Gütlich P (2000) Angew Chem Int Ed 39:3699

    Google Scholar 

  57. Oshio H, Spiering H, Ksenofontov V, Renz F, Gütlich P (2001) Inorg Chem 40:1143

    Google Scholar 

  58. Constable EC, Baum G, Bill E, Dyson R, van Eldik R, Fenske D, Kaderli S, Morris D, Neubrand A, Neuburger M, Smith DR, Wieghardt K, Zehnder M, Zuberbühler AD (1999) Chem Eur J 5:498

    Google Scholar 

  59. a. Breuning E, Ruben M, Lehn J-M, Renz F, Garcia Y, Ksenofontov V, Gütlich P, Wegelius E, Rissanen K (2000) Angew Chem Int Ed 39:2504; b. Ruben M, Breuning E, Lehn J-M, Ksenofontov V, Renz F, Gütlich P, Vaughan GBM (2003) Chem Eur J 9:4422

    Google Scholar 

  60. Chotalia R, Constable EC, Neuburger M, Smith DR, Zehnder M (1996) J Chem Soc Dalton Trans 4207

    Google Scholar 

  61. Constable EC, Ward MD, Tocher DA (1991) J Chem Soc Dalton Trans 1675

    Google Scholar 

  62. Harris CM, Patil HRH, Sinn E (1969) Inorg Chem 8:101

    Google Scholar 

  63. Hathcock DJ, Stone K, Madden J, Slattery SJ (1998) Inorg Chim Acta 282:131

    Google Scholar 

  64. Baker AT, Craig DC, Dong G, Rae AD (1995) Aust J Chem 48:1071

    Google Scholar 

  65. Goodwin HA, Sylva RN (1968) Aust J Chem 21:2881

    Google Scholar 

  66. König E, Ritter G, Goodwin HA (1973) Chem Phys 1:17

    Google Scholar 

  67. Childs BJ, Craig DC, Scudder ML, Goodwin HA (1998) Inorg Chim Acta 274:32

    Google Scholar 

  68. Childs BJ, Craig DC, Scudder ML, Goodwin HA (1998) Aust J Chem 51:895

    Google Scholar 

  69. Ayers T, Scott S, Goins J, Caylor N, Hathcock D, Slattery SJ, Jameson DL (2000) Inorg Chim Acta 307:7

    Google Scholar 

  70. Childs BJ, Craig DC, Scudder ML, Goodwin HA (1999) Aust J Chem 52:673

    Google Scholar 

  71. Baker AT, Goodwin HA, Rae AD (1984) Aust J Chem 37:443

    Google Scholar 

  72. a. Sylva RN, and Goodwin HA (1968) Aust J Chem 21:1081; b. Goodwin HA, Mather DW (1972) Aust J Chem 25:715; c. Childs BJ, Cadogan JC, Craig DC, Scudder MC, Goodwin HA (1997) Aust J Chem 50:129

    Google Scholar 

  73. Ritter G, König E, Irler W, Goodwin HA (1978) Inorg Chem 17:224

    Google Scholar 

  74. Goodwin HA, Mather DW, Smith FE (1975) Aust J Chem 28:33

    Google Scholar 

  75. Mather DW, Goodwin HA (1975) Aust J Chem 28:505

    Google Scholar 

  76. Sugiyarto KH, Craig DC, Rae AD, Goodwin HA (1996) Aust J Chem 49:505

    Google Scholar 

  77. Abushamleh AS, Goodwin HA (1988) Aust J Chem 41:873

    Google Scholar 

  78. DiBenedetto J, Arkle V, Goodwin HA, Ford PC (1985) Inorg Chem 24:455

    Google Scholar 

  79. Childs BJ, Craig DC, Scudder ML, Goodwin HA (1998) Aust J Chem 51:895; Childs BJ, Craig DC, Scudder ML, Goodwin HA (1999) Aust J Chem 52:673

    Google Scholar 

  80. Baker AT, Singh P, Vignevich V (1991) Aust J Chem 44:1041

    Google Scholar 

  81. Baker AT, Goodwin HA (1986) Aust J Chem 39:209

    Google Scholar 

  82. Carina RF, Verzegnassi L, Bernardinelli G,Williams AF (1998) Chem Comm 2681

    Google Scholar 

  83. Livingstone SE, Nolan JD (1972) J Chem Soc Dalton Trans 218

    Google Scholar 

  84. Addison AW, Burman S, Wahlgren CG, Rajan OA, Rowe TM, Sinn E (1987) J Chem Soc Dalton Trans 2621

    Google Scholar 

  85. Sugiyarto KH, Goodwin HA (1988) Aust J Chem 41:1645

    Google Scholar 

  86. Sugiyarto KH, Craig DC, Rae AD, Goodwin HA (1994) Aust J Chem 47:869

    Google Scholar 

  87. Sugiyarto KH, Weitzner K, Craig DC, Goodwin HA (1997) Aust J Chem 50:869

    Google Scholar 

  88. Sugiyarto KH, Scudder ML, Craig DC, Goodwin HA (2000) Aust J Chem 53:755

    Google Scholar 

  89. Sung RCW, McGarvey BR (1999) Inorg Chem 38:3644

    Google Scholar 

  90. Buchen T, Gütlich P, Goodwin HA (1994) Inorg Chem 33:4573

    Google Scholar 

  91. Buchen T, Gütlich P, Sugiyarto KH, Goodwin HA (1996) Chem Eur J 2:1134

    Google Scholar 

  92. Sugiyarto KH, McHale W-A, Rae AD, Scudder ML, Goodwin HA (2003) J Chem Soc Dalton Trans 2443

    Google Scholar 

  93. Lübbers R, Nowitzke G, Goodwin HA, Wortmann G (1997) J Phys IV France 7:C2–651

    Google Scholar 

  94. Holland JM, McAllister JA, Lu Z, Kilner CA, Thornton-Pett M, Halcrow MA (2001) J Chem Soc Chem Comm 577

    Google Scholar 

  95. Holland JM, McAllister JA, Lu Z, Kilner CA, Thornton-Pett M, Bridgeman AJ, Halcrow MA (2002) J Chem Soc Dalton Trans 548

    Google Scholar 

  96. Mahapatra S, Mukherjee RN (1993) Polyhedron 12:1603

    Google Scholar 

  97. Mahapatra S, Gupta N, Mukherjee, RN (1991) J Chem Soc Dalton Trans 2911

    Google Scholar 

  98. Mahapatra S, Butcher RJ, Mukherjee RN (1993) J Chem Soc Dalton Trans 3723

    Google Scholar 

  99. Manikandan P, Padmakumar K, Thomas KRJ, Varghese B, Onodera H, Manoharan PT (2001) Inorg Chem 40:6930

    Google Scholar 

  100. Bousseksou A, Verelst M, Constant-Machado H, Lemercier G, Tuchagues J-P, Varret F (1996) Inorg Chem 35:110

    Google Scholar 

  101. Thiel A, Bousseksou A, Verelst M, Varret F, Tuchagues J-P (1999) Chem Phys Lett 302:549

    Google Scholar 

  102. Anderson PA, Astley T, Hitchman MA, Keene FR, Moubaraki B, Murray KS, Skelton BW, Tiekink ERT, Toftlund H, White AH (2000) J Chem Soc Dalton Trans 3505

    Google Scholar 

  103. Sugiyarto KH, Craig DC, Rae AD Goodwin HA (1993) Aust J Chem 46:1269

    Google Scholar 

  104. Renz F, de Souza PA, Klingelhöfer G, Goodwin HA (2002) Hyperfine Interact 139:699

    Google Scholar 

  105. Krumholz P (1965) Inorg Chem 4:612

    Google Scholar 

  106. Boylan MJ, Nelson SM, Deeney FA (1971) J Chem Soc A 976

    Google Scholar 

  107. Goodwin HA, Mather DW (1974) Aust J Chem 27:2121

    Google Scholar 

  108. Goodwin HA, Mather DW (1974) Aust J Chem 27:965

    Google Scholar 

  109. König E, Kanellakopulos G, Powietzka B, Goodwin, HA (1990) Inorg Chem 29:4944

    Google Scholar 

  110. König E, Ritter G, Kulshreshtha SK, Waigel J, Goodwin HA (1984) Inorg Chem 23:1896

    Google Scholar 

  111. Kulshreshtha SK, Iyer RM (1987) Chem Phys Lett 134:239

    Google Scholar 

  112. König E, Ritter G, Waigel J, Goodwin HA (1985) J Chem Phys 83:3055

    Google Scholar 

  113. Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwin HA, Gütlich P (1999) J Phys Chem Solids 60:393

    Google Scholar 

  114. Onggo D, Craig DC, Rae AD, Goodwin HA (1991) Aust J Chem 44:331

    Google Scholar 

  115. Craig DC, Scudder ML, McHale W-A, Goodwin HA (1998) Aust J Chem 51:1131

    Google Scholar 

  116. a. Zhong ZJ, Tao J-Q, Yu Z, Dun C-Y, Liu Y-J, You X-Z (1998) J Chem Soc Dalton Trans 327; b. Létard J-F, Guionneau P, Codjovi E, Lavastre O, Bravic G, Chasseau D, Kahn O (1997) J Am Chem Soc 119:10861

    Google Scholar 

  117. Boča R, Boča M, Dlháň L, Falk K, Fuess H, Haase W, Jaroščiak R, Papánková B, Renz F, Vrbová M, Werner R (2001) Inorg Chem 40:3025

    Google Scholar 

  118. Scudder ML, Goodwin HA, Dance IG (1999) New J Chem 23:695

    Google Scholar 

  119. Matouzenko GS, Molnar G, Bréfuel N, Perrin M, Bousseksou A, Borshch SA (2003) Chem Mater 15:550

    Google Scholar 

Download references

Acknowledgements

The contributions from my students and colleagues together with support of the University of New South Wales, the Australian Research Council and the Alexander von Humboldt Stiftung are gratefully acknowledged. The rewarding collaborations with Professors E. König and G. Ritter at Erlangen, and Professor P. Gütlich and his group at Mainz have stimulated my continuing fascination for the spin crossover phenomenon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Goodwin .

Editor information

P. Gütlich H.A. Goodwin

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Goodwin, H.A. Spin Crossover in Iron(II) Tris(diimine) and Bis(terimine) Systems. In: Gütlich, P., Goodwin, H. (eds) Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13529

Download citation

  • DOI: https://doi.org/10.1007/b13529

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40394-4

  • Online ISBN: 978-3-540-44981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation