Compartment-specific functions of the ubiquitin-proteasome pathway

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 142))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amati B, Vlach J (1999) Kip1 meets SKP2: new links in cell-cycle control. Nat Cell Biol 1:E91–93

    PubMed  CAS  Google Scholar 

  • Amerik A Yu, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 16:4826–4838

    PubMed  CAS  Google Scholar 

  • Anton LC, Schubert U, Bacik I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW (1999) Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124

    PubMed  CAS  Google Scholar 

  • Ayalon Soffer M, Shenkman M, Lederkremer GZ (1999) Differential role of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits. J Cell Sci 112:3309–3318

    PubMed  CAS  Google Scholar 

  • Bailly E, Pines J, Hunter T, Bornens M (1992) Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J Cell Sci 101:529–545

    PubMed  CAS  Google Scholar 

  • Bartel B, Wunning I, Varshavsky A (1990) The recognition component of the N-end rule pathway. EMBO J 9:3179–3189

    PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemüller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    PubMed  CAS  Google Scholar 

  • Bebök Z, Mazzochi C, King SA, Hong JS, Sorscher EJ (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61β and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873–29878

    PubMed  Google Scholar 

  • Belich MP, Glynne RJ, Senger G, Sheer D, Trowsdale J (1994) Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol 4:769–776

    PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C, Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J 15:2069–2076

    PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    PubMed  CAS  Google Scholar 

  • Blondel M, Alepuz PM, Huang LS, Shaham S, Ammerer G, Peter M (1999) Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev 13:2284–2300

    PubMed  CAS  Google Scholar 

  • Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Ann Rev Cell Dev Biol 14:19–57

    CAS  Google Scholar 

  • Bordallo J, Wolf DH (1999) A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett 448:244–248

    PubMed  CAS  Google Scholar 

  • Bordallo J, Plemper RK, Finger A, Wolf DH (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9:209–222

    PubMed  CAS  Google Scholar 

  • Bour S, Schubert U, Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69:1510–1520

    PubMed  CAS  Google Scholar 

  • Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A (1998) A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J 17:5964–73

    PubMed  CAS  Google Scholar 

  • Brodsky JL, McCracken AA (1997) ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends in Cell Biol 7:151–156

    CAS  Google Scholar 

  • Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    PubMed  CAS  Google Scholar 

  • Brown CR, Doxsey SJ, White E, Welch W (1994) Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 160:47–60

    PubMed  CAS  Google Scholar 

  • Cahoreau C, Garnier L, Djiane J, Devauchelle G, Cerutti M (1994) Evidence for N-glycosylation and ubiquitination of the prolactin receptor expressed in a baculovirus-insect cell system. FEBS Lett 350:230–234

    PubMed  CAS  Google Scholar 

  • Caplan S, Green R, Rocco J, Kurjan J (1991) Glycosylation and structure of the yeast MF α 1 α-factor precursor is important for efficient transport through the secretory pathway. J Bacteriol 173:627–35

    PubMed  CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol 1:193–199

    PubMed  CAS  Google Scholar 

  • Cenciarelli C, Hou D, Hsu KC, Rellahan BL, Wiest DL, Smith HT, Fried VA, Weissman AM (1992) Activation-induced ubiquitination of the T cell antigen receptor. Science 257:795–797

    PubMed  CAS  Google Scholar 

  • Chang XB, Cui L, Hou YX, Jensen TJ, Aleksandrov AA, Mengos A, Riordan JR (1999) Removal of multiple arginine-framed trafficking signals overcomes misprocessing of delta F508 CFTR present in most patients with cystic fibrosis. Mol Cell 4:137–142

    PubMed  CAS  Google Scholar 

  • Chen P, Johnson P, Sommer T, Jentsch S, and Hochstrasser M (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα 2 repressor. Cell 74:357–369

    PubMed  CAS  Google Scholar 

  • Chillaron J, Haas IG (2000) Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol Biol Cell 11:217–226

    PubMed  CAS  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    PubMed  CAS  Google Scholar 

  • Cook JC, Chock PB (1992) Isoforms of mammalian ubiquitin-activating enzyme. Biol Chem 267:24315–24321

    CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    PubMed  CAS  Google Scholar 

  • Crepieux P, Kwon H, Leclerc N, Spencer W, Richard S, Lin R, Hiscott J (1997) I κBα physically interacts with a cytoskeleton-associated protein through its signal response domain. Mol Cell Biol 17:7375–7385

    PubMed  CAS  Google Scholar 

  • Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892

    PubMed  CAS  Google Scholar 

  • Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526–528

    PubMed  CAS  Google Scholar 

  • Davarinos NA, Pollenz RS (1999) Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem 274:28708–28715

    PubMed  CAS  Google Scholar 

  • de Virgilio M, Kitzmuller C, Schwaiger E, Klein M, Kreibich G, Ivessa, NE (1999) Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: The role of N-linked glycans and the unfolded protein response. Mol Biol Cell 10:4059–4073

    PubMed  Google Scholar 

  • de Virgilio M, Weninger H, Ivessa, NE (1998) Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    PubMed  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  • Deshaies RJ, Chau V, Kirschner M (1995) Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J 14:303–312

    PubMed  CAS  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of Ikappaßα inhibits NF-kappaß activation. Mol Cell 2:233–239

    PubMed  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    PubMed  CAS  Google Scholar 

  • Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    PubMed  CAS  Google Scholar 

  • Doye V, Hurt E (1997) From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9:401–411

    PubMed  CAS  Google Scholar 

  • Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN, Solomon E, de The H, Hay RT, Freemont PS (1999) SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112:381–393

    PubMed  CAS  Google Scholar 

  • Dürr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, Wolf DH, Rudolph HK (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9:1149–1162

    PubMed  Google Scholar 

  • Egner R, Kuchler K (1996) The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett 378:177–181

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: Quality control in the secretory pathway. Science 286:1882–1888

    PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel PM (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17:6144–6154

    PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel PM (1999) GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep 26:131–135

    PubMed  CAS  Google Scholar 

  • Fabre E, Hurt E (1997) Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 31:277–313

    PubMed  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN (2000) Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275:409–413

    PubMed  CAS  Google Scholar 

  • Fang H, Mullins C, Green N (1997) In addition to SEC11, a newly identified gene, SPC3, is essential for signal peptidase activity in the yeast endoplasmic reticulum. J Biol Chem 272:13152–13158

    PubMed  CAS  Google Scholar 

  • Finger A, Knop M, Wolf, DH (1993) Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem 218:565–74

    PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    PubMed  CAS  Google Scholar 

  • Floyd JA, Hamilton BA (1999) Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring? Neuron 24:765–766

    PubMed  CAS  Google Scholar 

  • Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18:7288–7293

    PubMed  CAS  Google Scholar 

  • Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107

    PubMed  CAS  Google Scholar 

  • Galan JM, Cantegrit B, Garnier C, Namy O, Haguenauer-Tsapis R (1998) ‘ER degradation’ of a mutant yeast plasma membrane protein by the ubiquitin-proteasome pathway. FASEB J 12:315–323

    PubMed  CAS  Google Scholar 

  • Galan JM, Moreau V, André B, Volland C, Hagenauer-Tsapis R (1996) Ubiquitination mediatedby the npi1p/rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946–10952

    PubMed  CAS  Google Scholar 

  • Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854

    PubMed  CAS  Google Scholar 

  • Galcheva-Gargova Z, Theroux SJ, Davis RJ (1995) The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene 11:2649–2655

    PubMed  CAS  Google Scholar 

  • Garcia Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    PubMed  CAS  Google Scholar 

  • Gillece P, Luz JM, Lennarz WJ, de la Cruz FJ, Römisch, K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147:1443–1456

    PubMed  CAS  Google Scholar 

  • Goebl MG, Goetsch L, Byers B (1994) The Ubc3 (Cdc34) ubiquitin-conjugating enzyme is ubiquitinated and phosphorylated in vivo. Mol Cell Biol 14:3022–3029

    PubMed  CAS  Google Scholar 

  • Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335

    PubMed  CAS  Google Scholar 

  • Gong L, Millas S, Maul GG, Yeh ETH (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275:3355–3359

    PubMed  CAS  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  Google Scholar 

  • Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15:5584–5594

    PubMed  Google Scholar 

  • Görner W, Schüller C, Ruis H (1999) Being at the right place at the right time: the role of nuclear transport in dynamic transcriptional regulation in yeast. Biol Chem 380:147–150

    PubMed  Google Scholar 

  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, Del Sal G (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471

    PubMed  CAS  Google Scholar 

  • Govers R, ten Broeke T, van Kerkhof P, Schwartz AL, Strous GJ (1999) Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J 18:28–36

    PubMed  CAS  Google Scholar 

  • Grossi de Sa MF, Martins de Sa C, Harper F, Olink-Coux M, Huesca M, Scherrer K (1988) The association of prosomes with some of the intermediate filament networks of the animal cell. J Cell Biol 107:1517–1530

    PubMed  CAS  Google Scholar 

  • Hagting A, Jackman M, Simpson K, Pines J (1999) Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 9:680–689

    PubMed  CAS  Google Scholar 

  • Hagting A, Karlsson C, Clute P, Jackman M, Pines J (1998) MPF localization is controlled by nuclear export. EMBO J 17:4127–4138

    PubMed  CAS  Google Scholar 

  • Hamman BD, Chen JC, Johnson EE, Johnson AE (1997) The aqueous pore through the translocon has a diameter of 40–60 A during cotranslational protein translocation at the ER membrane. Cell 89:535–544

    PubMed  CAS  Google Scholar 

  • Hampton RY, Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125:299–312

    PubMed  CAS  Google Scholar 

  • Hampton RY, Gardner RG, Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7:2029–2044

    PubMed  CAS  Google Scholar 

  • Handley-Gearhart PM, Stephen AG, Trausch Azar JS, Ciechanover A, Schwartz AL (1994) Human ubiquitin-activating enzyme, E1 Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem 269:33171–33178

    PubMed  CAS  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    PubMed  CAS  Google Scholar 

  • Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, Andre B (1995) NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77–87

    PubMed  CAS  Google Scholar 

  • Hein WR, Dudler L, Marston WL, Landsverk T, Young AJ, Avila D (1998) Ubiquitination and dimerization of complement receptor type 2 on sheep B cells. J Immunol 161:458–466

    PubMed  CAS  Google Scholar 

  • Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    PubMed  CAS  Google Scholar 

  • Hershko A (1997) Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol 9:788–99

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  • Hicke L (1999) Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–12

    PubMed  CAS  Google Scholar 

  • Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    PubMed  CAS  Google Scholar 

  • Hicke L, Zanolari B, Riezman H (1998) Cytoplasmic tail phosphorylation of the α-factor receptor is required for its ubiquitination and internalization. J Cell Biol 141:349–358

    PubMed  CAS  Google Scholar 

  • Hill K, Cooper AA (2000) Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J 19:550–561

    PubMed  CAS  Google Scholar 

  • Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728

    PubMed  CAS  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–39

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1998) There's the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev 12:901–907

    PubMed  CAS  Google Scholar 

  • Hochstrasser M, Johnson PR, Arendt CS, Amerik AY, Swaminathan S, Swanson R, Li SJ, Laney J, Pals Rylaarsdam R, Nowak J, Connerly PL (1999) The Saccharomyces cerevisiae ubiquitin-proteasome system. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 354:1513–1522

    CAS  Google Scholar 

  • Honda R, Tanaka H Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    PubMed  CAS  Google Scholar 

  • Hood JK, Silver PA (1999) In or out? Regulating nuclear transport. Curr Opin Cell Biol 11:241–247

    PubMed  CAS  Google Scholar 

  • Hopper AK (1999) Nucleocytoplasmic transport: Inside out regulation. Curr Biol 9:R803–806

    PubMed  CAS  Google Scholar 

  • Horak J, Wolf DH (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: Ubiquitination, endocytosis and degradation in the vaccuole. J Bacteriol 179:1541–1549

    PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:2563–2567

    PubMed  CAS  Google Scholar 

  • Huppa JB, Ploegh HL (1997) The α chain of the T cell antigen receptor is degraded in the cytosol. Immunity 7:113–122

    PubMed  CAS  Google Scholar 

  • Imamura T, Haruta T, Takata Y, Usui I, Iwata M, Ishihara H, Ishiki M, Ishibashi O, Ueno E, Sasaoka T, Kobayashi M (1998) Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem 273:11183–11188

    PubMed  CAS  Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    PubMed  CAS  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    PubMed  CAS  Google Scholar 

  • Janson LW, Ragsdale K, Luby-Phelps K (1996) Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains. Biophys J 71:1228–1234

    PubMed  CAS  Google Scholar 

  • Jeffers M, Taylor GA, Weidner KM, Omura S, Vande Woude GF (1997) Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol 17:799–808

    PubMed  CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    PubMed  CAS  Google Scholar 

  • Jentsch S (1992) The ubiquitin-conjugation system. Annu Rev Genet 26:179–207

    PubMed  CAS  Google Scholar 

  • Jentsch S, Seufert W, Sommer T, Reins HA (1990) Ubiquitin-conjugating enzymes: novel regulators of eukaryotic cells. Trends Biochem Sci 15:195–198

    PubMed  CAS  Google Scholar 

  • Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842

    PubMed  Google Scholar 

  • Johnson ES, Blobel G (1977) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799–26802

    Google Scholar 

  • Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981–993

    PubMed  CAS  Google Scholar 

  • Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1398

    PubMed  CAS  Google Scholar 

  • Kaffman A, O'Shea EK (1999) Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol 15:291–339

    PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK (1998) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nuclear. Nature 396:482–486

    PubMed  CAS  Google Scholar 

  • Kamitani T, Nguyen HP, Kito K, Fukuda-Kamitani, Yeh ET (1998) Covalent modification of the PML by the sentrin family of ubiquitin-like proteins J Biol Chem 273:3117–3120

    PubMed  CAS  Google Scholar 

  • Kawahara H, Yokosawa H (1992) Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev Biol 151:27–33

    PubMed  CAS  Google Scholar 

  • Keller SH, Lindstrom J, Taylor P (1998) Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the α-subunit of the nicotinic acetylcholine receptor. J Biol Chem 273:17064–17072

    PubMed  CAS  Google Scholar 

  • King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–9

    PubMed  CAS  Google Scholar 

  • Klausner RD, Sitia R (1990) Protein degradation in the endoplasmic reticulum. Cell 62:611–614

    PubMed  CAS  Google Scholar 

  • Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci USA 92:1764–1768

    PubMed  CAS  Google Scholar 

  • Knop M, Hauser N, Wolf DH (1996a) N-Glycosylation affects, endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:1229–1238

    PubMed  CAS  Google Scholar 

  • Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996b) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:753–763

    PubMed  CAS  Google Scholar 

  • Knuehl C, Seelig A, Brecht B, Henklein P, Kloetzel PM (1996) Functional analysis of eukaryotic 20S proteasome nuclear localization signal. Exp Cell Res 225:67–74

    PubMed  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–44

    PubMed  CAS  Google Scholar 

  • Koepp DM, Harper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97:431–434

    PubMed  CAS  Google Scholar 

  • Kolling R, Hollenberg CP (1994) The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J 13:3261–3271

    PubMed  CAS  Google Scholar 

  • Kopito RR (1997) ER Quality Control: The Cytoplasmic Connection. Cell 88:427–430

    PubMed  CAS  Google Scholar 

  • Kopito RR (1999) Biosynthesis and degradation of CFTR. Physiol Rev 79:167–173

    Google Scholar 

  • Kornitzer D, Ciechanover A (2000) Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 182:1–11

    PubMed  CAS  Google Scholar 

  • Kornitzer D, Raboy B, Kulka RG, Fink GR (1994) Regulated degradation of the transcription factor Gcn4. EMBO J 13:6021–6030

    PubMed  CAS  Google Scholar 

  • Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96:2817–2822

    PubMed  CAS  Google Scholar 

  • Lain S, Midgley C, Sparks A, Lane EB, Lane DP (1999) An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res 248:457–472

    PubMed  CAS  Google Scholar 

  • Lain S, **rodimas D, Lane DP (1999) Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel strategy to promote the p53 tumor suppressor function. Exp Cell Res 253:3150324

    Google Scholar 

  • Laney JD, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97:427–430

    PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280–27284

    PubMed  CAS  Google Scholar 

  • Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson P (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273:6503–6507

    PubMed  CAS  Google Scholar 

  • Lehner PJ, Cresswell P (1996) Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 8:59–67

    PubMed  CAS  Google Scholar 

  • Lencer WI, Hirst TR, Holmes RK (1999) Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1450:177–190

    PubMed  CAS  Google Scholar 

  • Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543

    PubMed  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    PubMed  CAS  Google Scholar 

  • Li FN, Johnston M (1997) Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J 16:5629–5638

    PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20:2367–2377

    PubMed  CAS  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–14

    PubMed  CAS  Google Scholar 

  • Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W (1998) Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J 17:368–383

    PubMed  CAS  Google Scholar 

  • Loayza D, Michaelis S (1998) Role for the ubiquitin-proteasome system in the vacuolar degradation of Ste6p, the a-factor transporter in Saccharomyces cerevisiae. Mol Cell Biol 18:779–89

    PubMed  CAS  Google Scholar 

  • Loeb JD, Schlenstedt G, Pellman D, Kornitzer D, Silver PA, Fink GR (1995) The yeast nuclear import receptor is required for mitosis. Proc Natl Acad Sci USA 92:7647–7651

    PubMed  CAS  Google Scholar 

  • Loeb KR, Haas AL (1994) Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern. Mol Cell Biol 14:8408–8419

    PubMed  CAS  Google Scholar 

  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17:6879–6887

    PubMed  CAS  Google Scholar 

  • Lopez-Girona A, Furnari B, Mondesert O, Russell P (1999) Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397:172–175

    PubMed  CAS  Google Scholar 

  • Lucero P, Penalver E, Vela L, Lagunas R (2000) Monoubiquitination is sufficient to signal internalization of the maltose transporter in Saccharomyces cerevisiae. J Bacteriol 182:241–243

    PubMed  CAS  Google Scholar 

  • Lukasc GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–6086

    Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    PubMed  CAS  Google Scholar 

  • Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140:259–270

    PubMed  CAS  Google Scholar 

  • Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (1998) A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol 18:314–321

    PubMed  CAS  Google Scholar 

  • Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-β TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    PubMed  CAS  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    PubMed  CAS  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499–509

    PubMed  CAS  Google Scholar 

  • Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17:3251–3257

    PubMed  CAS  Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132:291–298

    PubMed  CAS  Google Scholar 

  • McDonald HB, Byers B (1997) A proteasome cap subunit required for spindle pole body duplication in yeast. J Cell Biol 137:539–553

    PubMed  CAS  Google Scholar 

  • McGee TP, Cheng HH, Kumagai H, Omura S, Simoni RD (1996) Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis. J Biol Chem 271:25630–25638

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    PubMed  CAS  Google Scholar 

  • Miyazawa K, Toyama K, Gotoh A, Hendrie PC, Mantel C, Broxmeyer HE (1994) Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood 83:137–45

    PubMed  CAS  Google Scholar 

  • Mori S, Heldin CH, Claesson-Welsh L (1993) Ligand-induced ubiquitination of the platelet-derived growth factor β-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem 268:577–583

    PubMed  CAS  Google Scholar 

  • Mori S, Claesson-Eelsh L, Okuyama Y, Saito Y (1995) Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Commun 213:32–39

    PubMed  CAS  Google Scholar 

  • Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70

    PubMed  CAS  Google Scholar 

  • Mullins C, Lu Y, Campbell A, Fang H, Green N (1995) A mutation affecting signal peptidase inhibits degradation of an abnormal membrane protein in Saccharomyces cerevisiae. J Biol Chem 270:17139–14147

    PubMed  CAS  Google Scholar 

  • Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690

    PubMed  CAS  Google Scholar 

  • Nandi D, Jiang H, Monaco JJ (1996) Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol 156:2361–2364

    PubMed  CAS  Google Scholar 

  • Obin MS, Jahngen-Hodge J, Nowell T, Taylor A (1996) Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments) Evidence for ubiquitinylation of Gt and rhodopsin. J Biol Chem 271:14473–14484

    PubMed  CAS  Google Scholar 

  • Otsu M, Urade R, Kito M, Omura F, Kikuchi M (1995) A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J Biol Chem 270:14958–14961

    PubMed  CAS  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    PubMed  CAS  Google Scholar 

  • Pal JK, Gounon P, Grossi de Sa MF, Scherrer K (1998) Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl. J Cell Sci 90:555–567

    Google Scholar 

  • Palmer A, Rivett AJ, Thomson S, Hendil KB, Butcher GW, Fuertes G, Knecht E (1996) Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem J 316:401–407

    PubMed  CAS  Google Scholar 

  • Pante N, Aebi U (1996) Molecular dissection of the nuclear pore complex. Crit Rev Biochem Mol Biol 31:153–199

    PubMed  CAS  Google Scholar 

  • Paolini R, Kinet JP (1993) Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors. EMBO J 12:779–786

    PubMed  CAS  Google Scholar 

  • Papa FR, Amerik AY, Hochstrasser M (1999) Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell 10:741–756

    PubMed  CAS  Google Scholar 

  • Papa FR, Hochstrasser M (1993) The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366:313–319

    PubMed  CAS  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    PubMed  CAS  Google Scholar 

  • Petersen BO, Lukas J, Sorensen CS, Bartek J, Helin K (1999) Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J 18:396–410

    PubMed  CAS  Google Scholar 

  • Pickart CM (1997) Targeting of substrates to the 26S proteasome. FASEB J 11:1055–1066.

    PubMed  CAS  Google Scholar 

  • Pilon M, Schekman R, Römisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548.

    PubMed  CAS  Google Scholar 

  • Pines J (1999) Cell cycle Checkpoint on the nuclear frontier. Nature 397:104–105

    PubMed  CAS  Google Scholar 

  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    PubMed  CAS  Google Scholar 

  • Plemper RK, Egner R, Kuchler K, Wolf DH (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J Biol Chem 273:32848–32856

    PubMed  CAS  Google Scholar 

  • Plemper RK, Deak PM, Otto RT, Wolf DH (1999a) Re-entering the translocon from the lumenal side of the endoplasmic reticulum Studies on mutated carboxypeptidase yscY species. FEBS Lett 443:241–245

    PubMed  CAS  Google Scholar 

  • Plemper RK, Bordallo J, Deak PM, Taxic C, Hitt R, Wolf DH (1999b) Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J Cell Sci 112:4123–4134

    PubMed  CAS  Google Scholar 

  • Plemper RK, Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24:266–270

    PubMed  CAS  Google Scholar 

  • Plon SE, Leppig KA, Do HN, Groudine M (1993) Cloning of the human homolog of the CDC34 cell cycle gene by complementation in yeast. Proc Natl Acad Sci USA 90:10484–10488

    PubMed  CAS  Google Scholar 

  • Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, α1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795

    PubMed  CAS  Google Scholar 

  • Rapoport TA, Jungnickel B, Kutay U (1996) Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65:271–303

    PubMed  CAS  Google Scholar 

  • Reits EAJ, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 13:774–778

    Google Scholar 

  • Reits EAJ, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1998) Intracellular distribution of proteasomes. Curr Opin Immunol 10:110–114

    PubMed  CAS  Google Scholar 

  • Rivett AJ, Mason GG Murray, RZ Reidlinger J (1997) Regulation of proteasome structure and function. Mol Biol Rep 24:99–102

    PubMed  CAS  Google Scholar 

  • Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem Cytochem 40:1165–1172

    PubMed  CAS  Google Scholar 

  • Roberts BJ, Whitelaw ML (1999) Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J Biol Chem 274:36351–36356

    PubMed  CAS  Google Scholar 

  • Roth AF, Davis NG (1996) Ubiquitination of the yeast a-factor receptor. J Cell Biol 134:661–674

    PubMed  CAS  Google Scholar 

  • Roth AF, Sullivan DM, Davis NG (1998) A large PEST-like sequence directs the ubiquitination, endocytosis and vacuolar degradation of the yeast a-factor receptor. J Cell Biol 142:946–961

    Google Scholar 

  • Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17:554–564

    PubMed  CAS  Google Scholar 

  • Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D (2000) Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF (Met30) complex. EMBO J 19:282–294

    PubMed  CAS  Google Scholar 

  • Russell SJ, Steger KA, Johnston SA (1999) Subcellular localization, stoichiometry, and protein levels of 26S proteasome subunits in yeast. J Biol Chem 274:21943–21952

    PubMed  CAS  Google Scholar 

  • Saitoh H, Pu R, Cavenagh M, Dasso M (1997) RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc Natl Acad Sci USA 94:3736–3741

    PubMed  CAS  Google Scholar 

  • Sakata N, Stoops JD, Dixon JL (1999) Cytosolic components are required for proteasomal degradation of newly synthesized apolipoprotein B in permeabilized HepG2 cells. J Biol Chem 274:17068–17074

    PubMed  CAS  Google Scholar 

  • Sato S, Ward CL, Kopito RR (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J Biol Chem 273:7189–7192

    PubMed  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    PubMed  CAS  Google Scholar 

  • Scheffner M (1999) Moving protein heads for breakdown. Nature 398:103–104

    PubMed  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    PubMed  CAS  Google Scholar 

  • Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    PubMed  CAS  Google Scholar 

  • Schild H, Rammensee HG (2000) Perfect use of imperfection. Nature 404:709–710

    PubMed  CAS  Google Scholar 

  • Schmitz A, Herrgen H, Winkler A, Herzog V (2000) Cholera toxin is exported from microsomes by the Sec61 complex. J Cell Biol 148:1203–1212

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Bacik I, Cox JH, Bour S, Bennink JR, Orlowski M, Strebel K, Yewdell JW (1998) CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72:2280–2288

    PubMed  CAS  Google Scholar 

  • Schüle T, Rose M, Entian KD, Thumm M, Wolf DH (2000) Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase in yeast. EMBO J 19:2161–2167

    PubMed  Google Scholar 

  • Schwartz AL, Ciechanover A (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 50:57–74

    PubMed  CAS  Google Scholar 

  • Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci USA 95:560–564

    PubMed  CAS  Google Scholar 

  • Scidmore MA, Okamura HH, Rose MD (1993) Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol Biol Cell 4:1145–1159

    PubMed  CAS  Google Scholar 

  • Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature 373:78–81

    PubMed  CAS  Google Scholar 

  • Shamu CE, Story CM, Rapoport TA, Ploegh HL (1999) The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol 147:45–57

    PubMed  CAS  Google Scholar 

  • Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19:187–198

    PubMed  CAS  Google Scholar 

  • Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541

    PubMed  CAS  Google Scholar 

  • Silver ET, Gwozd TJ, Ptak C, Goebl M, Ellison MJ (1992) A chimeric ubiquitin conjugating enzyme that combines the cell cycle properties of CDC34 (UBC3) and the DNA repair properties of RAD6 (UBC2): implications for the structure, function and evolution of the E2s. EMBO J 11:3091–3098

    PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Romisch K, Davey J, Wolf DH, Lord JM (1999) Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 459:80–84

    PubMed  CAS  Google Scholar 

  • Smart P, Lane EB, Lane DP, Midgley C, Vojtesek B, Lain S (1999) Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 18:7378–7386

    PubMed  CAS  Google Scholar 

  • Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978

    PubMed  CAS  Google Scholar 

  • Sommer T, Jentsch S (1993) A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:176–179

    PubMed  CAS  Google Scholar 

  • Sommer T, Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11:1227–1233

    PubMed  CAS  Google Scholar 

  • Song A, Wang Q, Goebl MG, Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18:4994–4999

    PubMed  CAS  Google Scholar 

  • Springael JY, Andre B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol Biol Cell 9:1253–1263

    PubMed  CAS  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336

    PubMed  CAS  Google Scholar 

  • Stephen AG, Trausch Azar JS, Ciechanover A, Schwartz AL (1996) The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J Biol Chem 271:15608–15614

    PubMed  CAS  Google Scholar 

  • Stephen AG, Trausch Azar JS, Handley Gearhart PM, Ciechanover A, Schwartz AL (1997) Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation. J Biol Chem 272:10895–10903

    PubMed  CAS  Google Scholar 

  • Sternsdorf T, Jensen K, Will H (1997) Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 139:1621–1634

    PubMed  CAS  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    PubMed  CAS  Google Scholar 

  • Strous GJ, Govers R (1999) The ubiquitin-proteasome system and endocytosis. J Cell Sci 112:1417–1423

    PubMed  CAS  Google Scholar 

  • Strous GJ, van Kerkhof P, Govers R, Ciechanover A, Schwartz AL (1996) The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J 15:3806–3812

    PubMed  CAS  Google Scholar 

  • Su K, Stoller T, Rocco J, Zemsky J, Green R (1993) Pre-Golgi degradation of yeast prepro-α-factor expressed in a mammalian cell Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem 268:14301–14309

    PubMed  CAS  Google Scholar 

  • Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    PubMed  Google Scholar 

  • Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1994) Purification and enzymatic properties of peptide:N-glycanase from C3H mouse-derived L-929 fibroblast cells Possible widspread occurrence of post-translational remodification of proteins by N-deglycosylation. J Biol Chem 269:17611–17618

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Amerik AY, Hochstrasser M (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583–2594

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990) Possible mechanism of nuclear translocation of proteasomes. FEBS Lett 271:41–46

    PubMed  CAS  Google Scholar 

  • Tao W, Levine AJ (1999) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96:3077–3080

    PubMed  CAS  Google Scholar 

  • Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193–202

    PubMed  CAS  Google Scholar 

  • Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165

    PubMed  CAS  Google Scholar 

  • Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E (1998) Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 17:2728–2735

    PubMed  CAS  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9:661–664

    PubMed  CAS  Google Scholar 

  • van Kerkhof P, Govers R, Alves dos Santos CM, Strous GJ (2000) Endocytosis and degradation of the growth hormone receptor are proteasome-dependent. J Biol Chem 275:1575–1580

    PubMed  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    PubMed  CAS  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Wilkinson KD, Cook WJ (1985) Three-dimensional structure of ubiquitin at 28 A resolution. Proc Natl Acad Sci USA 82:3582–3585

    PubMed  CAS  Google Scholar 

  • Wang HR, Kania M, Baumeister W, Nederlof PM (1997) Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur J Cell Biol 73:105–113

    PubMed  CAS  Google Scholar 

  • Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269:25710–25718

    PubMed  CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitinproteasome pathway. Cell 83:121–127

    PubMed  CAS  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 93:13797–13801

    PubMed  CAS  Google Scholar 

  • Wesche J, Rapak A, Olsnes S (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 274:3443–3449

    Google Scholar 

  • Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    PubMed  CAS  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    PubMed  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    PubMed  CAS  Google Scholar 

  • Wilkinson BM, Tyson JR, Reid PJ, Stirling CJ (2000) District domains within yeast Sec61p involved in post-translational translocation and protein dislocation. J Biol Chem 275:521–529.

    PubMed  CAS  Google Scholar 

  • Wilkinson CR, Wallace M, Morphew M, Perry P, Allshire R, Javerzat JP, McIntosh JR, Gordon C (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J 17:6465–6476

    PubMed  CAS  Google Scholar 

  • Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11:1245–1256

    PubMed  CAS  Google Scholar 

  • Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW (1999) A family of mammalian F-box proteins. Curr Biol 9:1180–1182

    PubMed  CAS  Google Scholar 

  • **e Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J 18:6832–6844

    PubMed  CAS  Google Scholar 

  • **ong X, Chong E, Skach W R (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J Biol Chem 274:2616–2624

    PubMed  CAS  Google Scholar 

  • Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416–7429

    PubMed  CAS  Google Scholar 

  • Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S (1998) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 12:2131–1243

    PubMed  CAS  Google Scholar 

  • Yang M, Omura S, Bonifacino JS, Weissman AM (1998) Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med 187:835–846

    PubMed  CAS  Google Scholar 

  • Yang Y, Fruh K, Ahn K, Peterson PA (1995) In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem 270:27687–27694

    PubMed  CAS  Google Scholar 

  • Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U, et al (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232

    PubMed  CAS  Google Scholar 

  • Yu H, Kopito RR (1999) The role of multiubiquitination in dislocation and degradation of the α subunit of the T cell antigen receptor. J Biol Chem 274:36852–36858

    PubMed  CAS  Google Scholar 

  • Yuk MH, Lodish HF (1993) Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum. J Cell Biol 123:1735–1749

    PubMed  CAS  Google Scholar 

  • Zhou MY, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4:925–934

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin

About this chapter

Cite this chapter

Sommer, T., Jarosch, E., Lenk, U. (2001). Compartment-specific functions of the ubiquitin-proteasome pathway. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0117492

Download citation

  • DOI: https://doi.org/10.1007/BFb0117492

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67983-7

  • Online ISBN: 978-3-540-44451-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation