A control problem for gaussian states

  • Part C Modeling, Identification And Estimation
  • Conference paper
  • First Online:
Learning, control and hybrid systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 241))

Abstract

This paper is concerned with an analysis of physical limitations of macroscopic control due to the laws of quantum mechanics. A control problem for a class of quantum states, called Gaussian, which are widely used in quantum optics is considered. Our interest is focused on controlling the mean value and the variance of two obsevables, coordinate and momentum, with respect to Gaussian states. A necessary and sufficient condition for the mean value to be controllable is obtained. Furthermore it is shown that a problem to attain the smallest possible variance under the condition that its mean value is stable is reduced to an optimal regulator problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer and I. M. Glazman. Theory of Linear Operators in Hilbert Space. Ungar, New York, 1963.

    Google Scholar 

  2. A. Barchielli, L. Lanz and G. M. Prosperi. A model for the macroscopic description and continual observation in quantum mechanics. Nuovo Cimento, B72 (1982) 79–121.

    MathSciNet  Google Scholar 

  3. V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math., 14(3) (1961) 187–214.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. M. Caves. Quantum mechanics of measurement distributed in time. Phys. Rev. D, 33 (1986) 1643–1665.

    Article  MathSciNet  Google Scholar 

  5. E. B. Davies. On repeated measurements of continuous observables in quantum mechanics. J. Funct. Anal., 6 (1970) 318–346.

    Article  Google Scholar 

  6. N. Dunford and J. T. Schwartz. Linear Operators. Part I. Interscience, New York, 1958.

    Google Scholar 

  7. R. P. Fynman. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20 (1948) 367–387.

    Article  Google Scholar 

  8. R. P. Fynman. Quantum mechanical computers. Found. Phys., 16 (1986) 507–531.

    Article  MathSciNet  Google Scholar 

  9. R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130 (1963) 2529–2539.

    Article  MathSciNet  Google Scholar 

  10. C. W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, New York, 1976.

    Google Scholar 

  11. A. S. Holevo. Statistical decision theory for quantum systems. J. Multivariate Anal., 3(4) (1973) 337–394.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. S. Holevo. Commutation superoperator of a state and its applications in the noncommutative statistics. Rep. Math. Phys., 12(2) (1977) 251–271.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. C. Holevo. Covariant measurements and uncertainty relations. Rep. Math. Phys., 16(3) (1979) 385–400.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Kraus and J. Schröter. Expectation values of unbounded observables. Internat. J. Theoret. Phys., 7(6) (1973) 431–442.

    Article  MathSciNet  Google Scholar 

  15. W. Louisell. Radiation and Noise in Quantum Elictronics. McGraw-Hill, New York, 1964.

    Google Scholar 

  16. J. Manuceau and A. Verbeure. Quasifree states of the CCR. Comm. Math. Phys., 9(4) (1968) 293–302.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. B. Mensky. Group-theoretical structure of quantum continuous measurements. Phys. Lett., 150A (1990) 331–336.

    MathSciNet  Google Scholar 

  18. J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Comb. Phil. Soc., 45 (1949) 99–124.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Ohya. Quantum Ergodic Channels in Operator Algebras. J. Math. Anal. Appl., 84(2) (1981) 318–327.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Ohya. On compound state and mutual information in quantum information theory. IEEE. Tras. Inf. Theory, 29 (1983) 770–774.

    Article  MATH  Google Scholar 

  21. H. P. Robertson. The uncertainty principle. Phys. Rev., 34(1) (1929) 163–164.

    Article  Google Scholar 

  22. I. Segal. Mathematical Problems of Relativistic Physics. AMS, Providence, RI, 1963.

    MATH  Google Scholar 

  23. I. Segal. A generating functional for the states of linear Boson field. Canad. J. Math., 13(1) (1961) 1–18.

    MATH  MathSciNet  Google Scholar 

  24. P. W. Shor. Proceeding of the 35th Annual Symposium on Foundation of Computer Science. IEEE Computer Society Press, Los Alamis, CA, (1994) 116–123.

    Google Scholar 

  25. V. S. Varadarajan. Geometry of Quantum Theory, II. Quantum Theory of Covariant Systems. Van Nostrand, New York, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yutaka Yamamoto PhD Shinji Hara PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Yanagisawa, M., Kimura, H. (1999). A control problem for gaussian states. In: Yamamoto, Y., Hara, S. (eds) Learning, control and hybrid systems. Lecture Notes in Control and Information Sciences, vol 241. Springer, London. https://doi.org/10.1007/BFb0109736

Download citation

  • DOI: https://doi.org/10.1007/BFb0109736

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-076-7

  • Online ISBN: 978-1-84628-533-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation