Deep impurities

  • Chapter
  • First Online:
Festkörperprobleme 11

Part of the book series: Advances in Solid State Physics ((ASSP,volume 11))

Abstract

Tiefe Störstellen in Halbleitern werden in diesem allgemeinen Überblick behandelt. Die Theorie eines Wasserstoff-Modells mit effektiven Massen versagt völlig als Beschreibung der stark lokalisierten Löcher oder Elektronen an tiefen Zentren. Wannier-Funktionen oder die kürzlich beschriebene erfolgreiche LCAO-MO-Methode von Watkins und Messmer sind angemessener. Optische Absorptionsmessungen werden bei der Zusammenfassung der experimentellen Daten besonders behandelt; sie zeigen, daß eine Deltafunktion das bindence Potential des Zentrums sehr gut annähert. Die noch weitgehend unverstandenen Prozesse der strahlungslosen Rekombination hängen eng zusammen mit dem Verhalten tiefer Zentren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. T. Landsberg, phys. stat. sol. 41, 457 (1970); a recent general review about nonradiative transition mechanisms in semiconductors.

    Article  ADS  Google Scholar 

  2. V. L. Bonch-Bruevich and E. G. Landsberg, phys. stat sol. 29, 9 (1968).

    Article  ADS  Google Scholar 

  3. P. T. Landsberg, Festkörperprobleme VI, O. Madelung, editor, Vieweg Braunschweig 1967.

    Google Scholar 

  4. W. Schultz, Festkörperprobleme V, Vieweg, Braunschweig 1966.

    Google Scholar 

  5. A survey of radiative and non-radiative mechanisms in III–V semiconductors, can—for example—be found in: P. J. Dean, Trans. Met. Soc. AIME 242, 384 (1968).

    Google Scholar 

  6. P. J. Dean, Invited paper, 35. Meeting of the German Physical Society, Hannover 1970.

    Google Scholar 

  7. The most recent detailed results of luminescence research can be found in the papers presented at the 1969 Luminescence Conference at Newark, Delaware (USA). Proceedings are published in J. Luminesc. 1, 2 (1970).

    Google Scholar 

  8. E. Spenke in “Semiconductor Silicon”, R. R. Haberecht and E. L. Kern, editors, Electrochemical Society, New York 1969.

    Google Scholar 

  9. W. Kohn in “Solid State Physics” F. Seitz and D. Tumbull., editors Academic Press, New York 1957, Vol. 5.

    Google Scholar 

  10. One experimental determination of the, effective Bohr radius of a donor-electron in InP was made by U. Heim, Solid State Comm. 7, 445 (1969), in good agreement with effective-mass theory.

    Article  ADS  Google Scholar 

  11. J. C. Phillips, Phys. Rev. Lett. 24, 1114 (1970).

    Article  ADS  Google Scholar 

  12. J. C. Phillips, Phys. Rev. B1, 1540, 1545 (1970); B2, 4044 (1970).

    ADS  Google Scholar 

  13. For one definition of “shallow” versus “deep” impurities, see, M. A. Lampert, Proc. IRE 50, 1785 (1962).

    Article  Google Scholar 

  14. D. B. Fitchen, “Physics of Color Centers”, Academic Press, New York, 1968.

    Google Scholar 

  15. J. W. Allen, Proc. Phys. Soc. (London) J. Phys. C 1, 1136 (1968).

    ADS  Google Scholar 

  16. G. D. Watkins in “Radiation Effects in Semiconductors.”, F. Vook, editor, Plenum Press, New York 1968, p. 67.

    Google Scholar 

  17. For the Jahn-Teller effect in semiconductors, see T. N. Morgan, Phys. Rev. Lett. 24, 887 (1970) and Refs. 37–39.

    Article  ADS  Google Scholar 

  18. J. C. Phillips, Phys. Rev. Lett. 22, 285 (1969).

    Article  ADS  Google Scholar 

  19. W. Czaja, following talk at this conference; see this volume of «Festkörperprobleme».

    Google Scholar 

  20. The term “flaw” for a multivalent impurity was suggested by W. Shockley and J. T. Last, Phys. Rev. 107, 392 (1957).

    Article  MATH  ADS  Google Scholar 

  21. W. Shockley, Proc. IRE 46, 973 (1958).

    Article  Google Scholar 

  22. J. S. Blakemore, “Semiconductor Statistics,” Pergamon Press Oxford 1962.

    MATH  Google Scholar 

  23. G. Güttler and H. J. Queisser, Energy Conversion 10, 51 (1970), also J. Appl. Phys. 40, 4994 (1969). The first paper gives a detailed discussion of deep impurities for solar cell efficiency; it is shown that previous proposals to increase efficiency by deep impurities are invalid.

    Article  Google Scholar 

  24. W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    Article  ADS  Google Scholar 

  25. W. Michaelis and M. H. Pilkuhn, phys. stat. sol. 36, 311 (1969).

    Article  ADS  Google Scholar 

  26. M. H. Pilkuhn, Proc. IX. Internat. Conf. Phys. Semicond. Moscow 1968 Publ. Nauka, Leningrad 1968, p. 523.

    Google Scholar 

  27. W. Shockley and H. J. Quisser, J. Appl. Phys. 32, 510 (1961).

    Article  ADS  Google Scholar 

  28. For the extensive field of semiconductor statistics, see the textbook of Blakemore, Ref. 22.

    MATH  Google Scholar 

  29. On the question of the improbability of simultaneous phonon emissions during nonradia-tive transitions, see Refs. (1–4).

    Article  ADS  Google Scholar 

  30. A very important proposed mechanism for nonradiative recombinations in the Auger effect, treated in detail by P. T. Landsberg and coworkers, reviewed in Refs. (1–3).

    Article  ADS  Google Scholar 

  31. For an indroduction to Wannier functions, see for example C. Kittel, Quantum Theory of Solids, Wiley, New York 1963, esp. p. 195.

    Google Scholar 

  32. J. Callaway and A. J. Hughes, Phys. Rev. 156, 860 (1967).

    Article  ADS  Google Scholar 

  33. R. A. Tawil, Bull. Am. Phys. Soc. 15, 258 (1970).

    Google Scholar 

  34. H. Teichler and A. Seeger, private communication.

    Google Scholar 

  35. A discussion on Wannier functions and their optimal adaptation to symmetry in the diamond structure is given by H. Teichler, phys. stat. sol. 43, 307 (1971).

    Article  ADS  Google Scholar 

  36. K. H. Bennemann, Phys. Rev. 130, 1757 (1963), Phys. Rev. 137, A 1497 (1965).

    Article  ADS  Google Scholar 

  37. R. P. Messmer and G. D. Watkins, Phys. Rev. Lett. 25, 656 (1970).

    Article  ADS  Google Scholar 

  38. G. D. Watkins and R. P. Messmer, Proc. X. Int. Conf. Semicond. Physics Cambridge, Mass. 1970; S. P. Keller et al., editors, p. 623.

    Google Scholar 

  39. W. Gebhardt, «Der Jahn-Teller Effekt», review paper in Festkörperprobleme IX, O. Madelung, editor, Vieweg, Braunschweig 1969, p. 99.

    Chapter  Google Scholar 

  40. D. Geist, «Paramagnetische Elektronenresonanz in Halbleitern”,. Festkörperprobleme II, F. Sauter, editor, Vieweg 1963.

    Google Scholar 

  41. A. Seeger, «Strahlenschädigung von Metallen und Halbleitern», Festkörperprobleme IV, F. Sauter, editor, Vieweg 1965.

    Google Scholar 

  42. «Radiation Damage in Semiconductors», Dussod, Paris 1965.

    Google Scholar 

  43. R. Bäuerlein, «Strahlenschäden in Halbleitern und Halbleiterbauelementen», Festkörper-probleme VIII, O. Madelung, editor, Vieweg/Pergamon 1968.

    Google Scholar 

  44. See, for example G. I. Roberts and C. R. Crowell, J. Appl. Phys. 41, 1767 (1970), describing “Capacitance Spectroscopy”.

    Article  ADS  Google Scholar 

  45. Recently a technique was described by Y. Zohta, Appl. Phys. Lett. 17, 284 (1970), which utilizes characteristic differences between the standard capacitance method and the Copeland-technique for the analysis of deep impurities.

    Article  ADS  Google Scholar 

  46. J. A. Copeland, IEEE Trans. Electron Devices 18, 50 (1971).

    Article  Google Scholar 

  47. One example for the very complicated solid-state reactions in GaAs is described in: C. S. Fuller and K. B. Wolfstim, J. Appl. Phys. 34, 2287 (1963), and Appl. Phys. Lett 2, 45 (1963).

    Article  ADS  Google Scholar 

  48. J. Rachmann, contributed paper at this meeting, demonstrating scattering of holes in GaAs by dipoles of impurities, Verhandl. Deutsche Physikalische Gesellschaft 9/1971, paper Hl 10.

    Google Scholar 

  49. R. C. Jaklevic, and J. Lambe, Phys. Rev. Lett. 17, 1139 (1966) detected organic molecules inside a tunneling barrier.

    Article  ADS  Google Scholar 

  50. Local phonon modes of impurities can be detected by tunneling, e. g. see E. L. Wolf, Phys. Rev. Lett. 20, 204 (1968).

    Article  ADS  Google Scholar 

  51. C. B. Duke et al., Proc. Tenth Int. Conf. Phys. Semicond, Cambridge, Mass., 1970, p. 856 report on impurity-assisted tunneling in GaAs junctions, also see N. Holonyak, Jr. et al., Phys. Rev. Lett 24, 589 (1970).

    Google Scholar 

  52. For more information on tunneling phenomena, C. B. Duke, Tunneling in Solids, Academic Press, New York 1969.

    Google Scholar 

  53. W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  Google Scholar 

  54. For complete details on definitions and properties of the various lifetimes in a semiconductor, see Refs. (1–4) and (22).

    Article  ADS  Google Scholar 

  55. R. G. Pratt and B. K. Ridley, Proc. Phys. Soc. 81, 996 (1963).

    Article  ADS  Google Scholar 

  56. References concerning the problems of semi-insulating GaAs are found in O. Madelung, Physics of III–V-Compounds, Wiley, New York 1964.

    Google Scholar 

  57. C. H. Henry, K. Nassau, and J. W. Shiever, Phys. Rev. Lett. 24, 820 (1970).

    Article  ADS  Google Scholar 

  58. W. G. Spitzer, invited talk at this conference, see this volume.

    Google Scholar 

  59. G. Lucovsky, Solid State Comm. 3, 299 (1965).

    Article  ADS  Google Scholar 

  60. D. L. Dexter, Solid State Physics, Vol. 6, F. Seitz and D. Turnbull, editors, Academic Press, New York 1958, p. 353.

    Google Scholar 

  61. R. A. Chapman and W. G. Hutchinson, Phys. Rev. Lett. 18, 443 (1967).

    Article  ADS  Google Scholar 

  62. J. S. Blakemore and C. E. Sarver, Phys. Rev. 173, 767 (1968), also showed the success of the δ-function model.

    Article  ADS  Google Scholar 

  63. C. S. Fuller, K. B. Wolfstirn and H. W. Allison, J. Appl. Phys. 38, 2873 (1967).

    Article  ADS  Google Scholar 

  64. M. Blätte, dissertation Frankfurt 1970; M. Kautzsch and F. Willmann diploma theses, Frankfurt. Manuscripts in preparation.

    Google Scholar 

  65. The apparatus is described in: M. Blätte, Optics Comm. 1, 460 (1970).

    Article  ADS  Google Scholar 

  66. M. Blätte and F. Willmann, to be publ.

    Google Scholar 

  67. M. Blätte, W. Schairer, and F. Willmann, Solid State Comm 8, 1265 (1970).

    Article  ADS  Google Scholar 

  68. P. Hiesinger, Hall-data on Au-doped GaAs, to be publ.

    Google Scholar 

  69. H. B. Bebb and R. A. Chapman, J. Phys. Chem. Sol. 28, 2087 (1967); H. B. Bebb, Phys. Rev. 185, 1116 (1969).

    Article  ADS  Google Scholar 

  70. W. Schairer, dissertation Frankfurt/M. 1970 (unpublished).

    Google Scholar 

  71. W. Schairer and E. Grobe, Solid State Comm. 8, 2017 (1970).

    Article  ADS  Google Scholar 

  72. H. J. Queisser and C. S. Fuller, J. Appl. Phys. 37, 4895 (1966).

    Article  ADS  Google Scholar 

  73. N. Stath, unpubl. data in agreement with earlier data by T. C. Lee and W. W. Anderson, Solid State Comm. 2, 265 (1964).

    Article  ADS  Google Scholar 

  74. J. J. Hopfield, J. Phys. Chem. Sol. 10, 110, (1959).

    Article  ADS  Google Scholar 

  75. A review concerning the effects of optical phonons in semiconductors is given by H. Y. Fan Moscow Conference (see Ref. (26)), p. 135.

    Google Scholar 

  76. At this conference, H. G. Grimmeiss and co-workers presented a refined technique for measuring cross-sections with the photo-effect; new results for Si: Au were also reported. see: Verhandl. DPG 9/1971, p. 709, also to be publ. in Sol. State Electronics.

    Google Scholar 

  77. For a very recent discussion of a vibronic center in GaAs and its configurational coordinates, see E. W. Williams and A. M. White, Solid State Comm. 9, 279 (1971).

    Article  ADS  Google Scholar 

  78. R. A. Messenger and J. S. Blakemore, recently discussed the effective-field correction for their data on Si:In, Solid State Comm. 9, 319 (1971). *** DIRECT SUPPORT *** A00AX011 00004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. Madelung

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Friedr. Vieweg + Sohn GmbH, Verlag

About this chapter

Cite this chapter

Queisser, HJ. (1971). Deep impurities. In: Madelung, O. (eds) Festkörperprobleme 11. Advances in Solid State Physics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107682

Download citation

  • DOI: https://doi.org/10.1007/BFb0107682

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08017-4

  • Online ISBN: 978-3-540-75328-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation