Are there unsolved problems in the interpretation of quantum mechanics?

  • Conference paper
  • First Online:
Open Systems and Measurement in Relativistic Quantum Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 526))

Abstract

One tries to identify and assess which basic problems can still be considered as unsolved, or only partly solved, in the interpretation of quantum mechanics. This means of course that one considers most other problems as satisfactorily solved, and this leads us to a brief review of the progress which has been achieved in the last two decades or so. This necessary introduction bears on three main topics: the derivation of classical physics from quantum mechanics, the decoherence effect and the method of consistent histories. Most aspects of the first two topics are now confirmed by experiment. The last one is clarified, in view of recent questioning, by considering consistent histories as a universal, sound and often intuitive language, which is remarkably convenient for a logical interpretation.

Three basic problems are then identified, namely: (i) The construction of collective observables (which is necessary as a preliminary for the formulation of classical physics and decoherence). (ii) The status of decoherence, meaning essentially: is it only valid for practical purposes or deeper? (iii) Objectification, or the uniqueness of data. These problems are discussed in a rather general way. The first one is considered as mostly technical, though difficult. A positive answer to the second problem is proposed, according to which decoherence is fundamental. It raises however a somewhat new epistemic question, which is the exact meaning of extremely small probabilities. The last problem is considered as non-existent.

In view however of some strong beliefs by competent physicists in the sound-ness of the objectification problem, this question is investigated more thoroughly. After assuming that an R process insuring real reduction exists, one defines the constraints it should obey. They are found very difficult to satisfy but, if they could be met, they might help progress in a direction differing from the one I stated above for objectification.

Laboratoire Associé au CNRS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Chevalley, Ontologie et méthode dans la physique contemporaine; la physique quantique et la fin de la philosophie classique de la nature (Thesis, University Paris X, Nanterre, 1997).

    Google Scholar 

  2. D. Murdoch, Niels Bohr's philosophy of physics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  3. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, (Springer, Berlin, 1932). English translation by R. T. Beyer, Mathematical Foundations of Quantum Mechanics, (Princeton University Press, 1955).

    MATH  Google Scholar 

  4. R. G. Griffiths, J. Stat. Phys. 36, 219 (1984).

    Article  MATH  ADS  Google Scholar 

  5. R. Omnès, J. Stat. Phys. 53, 893 (1988).

    Article  MATH  ADS  Google Scholar 

  6. R. Omnès, Rev. Mod. Phys. 64, 339 (1992).

    Article  ADS  Google Scholar 

  7. R. Omnès, The interpretation of quantum mechanics (Princeton University Press, 1994).

    Google Scholar 

  8. B. d'Espagnat, J. Stat. Phys. 56, 747 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. B. d'Espagnat, Found. Phys. 20, 1147 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  10. B. d'Espagnat, Le Réel voilé, analyse des concepts quantiques (Fayard, Paris, 1994). English translation: Veiled Reality (Addison-Wesley, Reading, 1995).

    Google Scholar 

  11. F. Dowker, A. Kent, J. Stat. Phys. 82, 1575 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. A. Kent, Phys. Rev. Lett. 78, 2874 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. R. G. Griffiths, Phys. Rev. A 54, 2759 (1996).

    ADS  Google Scholar 

  14. R. Omnès Understanding Quantum Mechanics (Princeton University Press, to be published).

    Google Scholar 

  15. L. Hörmander, The analysis of partial differential operators, 3 volumes (Springer, Berlin, 1985).

    Google Scholar 

  16. E. P. Wigner, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  17. H. Weyl, Bull. Amer. Math. Soc. 56, 115 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  18. Yu. V. Egorov, Uspehi Mat. Nauk. 24, 5, 235 (1969).

    Google Scholar 

  19. F. Karolyhazy, A. Frenkel and B. Lukacs, in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, ed., (Oxford University Press, Oxford, 1986) pp. 109–28.

    Google Scholar 

  20. J. Clarke, A. N. Cleland, M. H. Devoret, D. Estève, J. M. Martinis, Science 239, 992 (1988).

    Article  ADS  Google Scholar 

  21. E. Schrödinger, Naturwissenschaften, 23, 807, 823, 844 (1935).

    Article  ADS  Google Scholar 

  22. N. G. Van Kampen, Physica 20, 603 (1954).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. H. D. Zeh, Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  24. A. O. Caldeira, A. J. Leggett, Physica A 121, 587 (1983).

    ADS  MathSciNet  Google Scholar 

  25. A. O. Caldeira, A. J. Leggett, Ann. Phys. (NY) 149, 374 (1983) and 153, 445 (Erratum).

    Article  ADS  Google Scholar 

  26. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, O. Stamatescu, H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).

    MATH  Google Scholar 

  27. B. L. Hu, J. P. Paz, Y. Zhang, Phys. Rev. D45, 2843 (1992).

    ADS  MathSciNet  Google Scholar 

  28. E. Joos, H. D. Zeh, Z. Phys. B 59, 229 (1985).

    ADS  Google Scholar 

  29. J. P. Paz, S. Habib, W. H. Zurek, Phys. Rev. D47, 488 (1993).

    ADS  Google Scholar 

  30. J. P. Paz, in Physical Origins of Time Asymmetry; J. J. Halliwell, J. Prez-Mercader, W. H. Zurek, eds., (Cambridge University Press, 1994).

    Google Scholar 

  31. W. G. Unruh, W. H. Zurek, Phys. Rev. D 40, 1071 (1989).

    ADS  MathSciNet  Google Scholar 

  32. W. H. Zurek Phys. Rev. D24, 1516 (1981).

    ADS  MathSciNet  Google Scholar 

  33. W. H. Zurek, Phys. Rev. D26, 1862 (1982).

    ADS  MathSciNet  Google Scholar 

  34. W. H. Zurek, in Physical Origins of Time Asymmetry; J. J. Halliwell, J. Pérez-Mercader, W. H. Zurek, eds., (Cambridge University Press, 1994).

    Google Scholar 

  35. R. Omnès, Phys. Rev. A 56, 3383 (1997).

    ADS  Google Scholar 

  36. M. Gell-Mann, J. B. Hartle, Phys. Rev. D 47, 3345 (1993).

    ADS  MathSciNet  Google Scholar 

  37. A. J. Leggett, Progr. Theor. Phys. Supplement 69, 1 (1980).

    Article  MathSciNet  Google Scholar 

  38. A. J. Leggett, in Chance and Matter, Les Houches Session XLVI, 1986, J. Souletie, J. Vannimenus, R. Stora, eds., (North-Holland, Amsterdam, 1987).

    Google Scholar 

  39. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, S. Haroche, Phys. Rev. Lett., 77, 4887 (1996).

    Article  ADS  Google Scholar 

  40. H. Everett, Rev. Mod. Phys., 29, 454 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Gell-Mann, J. B. Hartle, in Complexity, Entropy, and the Physics of Information, W. H. Zurek, edit. (Addison-Wesley, Redwood City, CA, 1991).

    Google Scholar 

  42. J. S. Bell, Helv. Phys. Acta, 48, 93 (1975).

    MathSciNet  MATH  Google Scholar 

  43. E. Borel, Valeur pratique et philosophie des probabilités (Gauthier-Villars, Paris, 1937); see also Le jeu, la chance et les théories scientifiques (Gallimard, 1941).

    Google Scholar 

  44. R. Penrose, Gen. Rel. Grav., 28, 581 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. R. Penrose, The Large, the Small and the Human Mind, (Cambridge University Press, Cambridge, U.K., 1997).

    MATH  Google Scholar 

  46. W. Pauli, Scientia, 59, 65 (1936).

    Google Scholar 

  47. W. Pauli, Experientia, 6, 72 (1950).

    Article  Google Scholar 

  48. W. Pauli, in Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., K. von Megenn, A. Hermann, V. Weisskopf, eds., (Springer, Berlin), I (1979), II (1985), III (1993).

    Google Scholar 

  49. D. B. Bohm, J. Hiley, The undivided universe (Routledge, 1993).

    Google Scholar 

  50. D. Dürr, S. Goldstein, N. Zanghi, Phys. Lett. A 172, 6 (1992).

    ADS  Google Scholar 

  51. D. Dürr, S. Goldstein, N. Zanghi, J. Stat. Phys. 67, 843 (1992).

    Article  MATH  ADS  Google Scholar 

  52. G. C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D34, 470 (1986).

    ADS  MathSciNet  Google Scholar 

  53. F. Karolyhazy, Nuovo. Cim., A42, 390 (1966).

    Article  ADS  Google Scholar 

  54. F. Karolyhazy, Magyar Fizikai Polyoir Mat., 12, 24. (1974).

    Google Scholar 

  55. P. Pearle, Phys. Rev. D 13, 857 (1976).

    ADS  MathSciNet  Google Scholar 

  56. P. Pearle, Phys. Rev. Lett. 53, 1775 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  57. P. Pearle, Phys. Rev. A39, 2277–89 (1989).

    ADS  Google Scholar 

  58. R. Omnès, Philosophie de la science contemporaine (Gallimard, Paris, 1994). English translation by A. Sangalli with additional material: From quantum physics to common sense; a scientist's philosophy of science (Princeton University Press, to be published).

    Google Scholar 

  59. K. Hepp, E. H. Lieb, Helv. Phys. Acta, 46, 573 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Heinz-Peter Breuer Francesco Petruccione

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Omnès, R. (1999). Are there unsolved problems in the interpretation of quantum mechanics?. In: Breuer, HP., Petruccione, F. (eds) Open Systems and Measurement in Relativistic Quantum Theory. Lecture Notes in Physics, vol 526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104403

Download citation

  • DOI: https://doi.org/10.1007/BFb0104403

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65978-5

  • Online ISBN: 978-3-540-48808-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation