System identification and modelling of a high performance hydraulic actuator

  • Section 10: Modelling And Control
  • Conference paper
  • First Online:
Experimental Robotics II

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 190))

Abstract

Detailed knowledge of actuator properties is a prerequisite for advanced manipulator design and control. This paper deals with the experimental identification and modelling of the nonlinear dynamics of a high performance hydraulic actuator. Such actuators are of interest for applications which require both high power and high bandwidth. An analytical model of the system is formulated, and a software simulator implementing the force-controlled actuator model including all the nonlinear elements is shown to predict the real system's behavior quite well. The actuator properties and performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Animate Systems Incorporated (ASI) 1991. Advanced Robotic Controller System Manual. Salt Lake City, Utah.

    Google Scholar 

  2. Blackburn, J. F., Reethof, G., Shearer, J. L. (Eds.) 1960. Fluid Power Control. Cambridge: The MIT Press.

    Google Scholar 

  3. Bobrow, J. E., Desai, J. 1990. Modeling and Analysis of a High-Torque, Hydrostatic Actuator for Robotic Applications. Experimental Robotics I, the First Int. Symp. V. Hayward, O. Khatib (Eds.) Springer-Verlag, pp. 215–228.

    Google Scholar 

  4. Frame, J. G., Mohan, N., Liu, T. 1982. Hysteresis Modeling in an Electromagnetic Transients Program. IEEE Trans. on Power Apparatus and Systems Vol. PAS-101, No. 9, September, pp. 3403–3411.

    Google Scholar 

  5. Gille, J. C., Decaulne, P., Pélegrin, M. 1985. Dynamique de la commande linéaire. Paris: Dunod. (in french)

    Google Scholar 

  6. Hayward, V. 1991. Borrowing Some Design Ideas From Biological Manipulators to Design an Artificial One. Robots and Biological Systems, NATO Advanced Research Workshop. Dario P., Sandini, G., Aebisher, P. (Eds.), Springer-Verlag, in press.

    Google Scholar 

  7. McLain, T. W., Iversen, E. K., Davis, C. C., Jacobsen, S. C. 1989. Development, Simulation, and Validation of a Highly Nonlinear Hydraulic Servosystem Model. Proc. of the 1989 American Control Conference, AACC. Piscataway: IEEE.

    Google Scholar 

  8. Shearer, J. L. 1983. Digital Simulation of a Coulomb-Damped Hydraulic Servosystem. Trans. ASME, J. Dyn. Sys., Meas., Contr. Vol. 105, December, pp. 215–221.

    Google Scholar 

  9. The Math Works Inc. 1990. SIMULAB: A Program for Simulating Dynamic Systems. (user's guide)

    Google Scholar 

  10. Threlfall, D. C. 1978. The Inclusion of Coulomb Friction in Mechanisms Programs with Particular Reference to DRAM. Mech. and Mach. Theory Vol. 13, pp. 475–483.

    Google Scholar 

  11. Walters, R. 1967. Hydraulic and Electro-Hydraulic Servo Systems. Cleveland: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raja Chatila Gerd Hirzinger

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this paper

Cite this paper

Boulet, B., Daneshmend, L., Hayward, V., Nemri, C. (1993). System identification and modelling of a high performance hydraulic actuator. In: Chatila, R., Hirzinger, G. (eds) Experimental Robotics II. Lecture Notes in Control and Information Sciences, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036161

Download citation

  • DOI: https://doi.org/10.1007/BFb0036161

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19851-2

  • Online ISBN: 978-3-540-39323-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation