Fabrication of Flexible Devices by Inkjet Printing

  • Conference paper
  • First Online:
Innovative Technologies for Printing, Packaging and Digital Media (CACPP 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1144))

Included in the following conference series:

  • 224 Accesses

Abstract

Currently, flexible devices have a wide range of applications such as health managements, drug deliveries, and electronic skins. The inkjet printing is considered the most promising technology for manufacturing flexible devices due to its high resolution, large scale, and low cost. Here, we give a comprehensive review of the fabrication of flexible devices by inkjet printing. First, we introduce the different types of inkjet printing, including continuous inkjet printing and on-demand inkjet printing. In addition, we describe flexible substrates and nano-metallic inks for preparation of flexible devices. Lastly, the perspectives for future development of flexible devices are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, S.-T., et al.: An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017)

    Article  Google Scholar 

  2. Zhang, H., et al.: Research progress of biomimetic memristor flexible synapse. Coatings 12(1), 21 (2021)

    Article  Google Scholar 

  3. Zhao, W., Jiang, M., Wang, W., Liu, S., Huang, W., Zhao, Q.: Flexible transparent supercapacitors: materials and devices. Adv. Func. Mater.Func. Mater. 31(11), 2009136 (2020)

    Article  Google Scholar 

  4. Lian, C., et al.: Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron. 3(1), 18 (2019)

    Article  Google Scholar 

  5. Cheng, Y.-B., Pascoe, A., Huang, F., Peng, Y.: Print flexible solar cells. Nature 539(7630), 488–489 (2016)

    Article  Google Scholar 

  6. Zhang, F., et al.: Reactive material jetting of polyimide insulators for complex circuit board design. Addit. Manuf.. Manuf. 25, 477–484 (2019)

    Google Scholar 

  7. Huang, T.-T., Wu, W.: Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J. Mater. Chem. A 7(41), 23280–23300 (2019)

    Article  Google Scholar 

  8. Shah, M.A., Lee, D.-G., Lee, B.-Y., Hur, S.: Classifications and applications of inkjet printing technology: a review. IEEE Access 9, 140079–140102 (2021)

    Article  Google Scholar 

  9. Basiricò, L., Cosseddu, P., Fraboni, B., Bonfiglio, A.: Inkjet printing of transparent, flexible, organic transistors. Thin Solid Films 520(4), 1291–1294 (2011)

    Article  Google Scholar 

  10. Peng, X., et al.: Simulation of a hemispherical chamber for thermal inkjet printing. Micromachines 13(11), 1843 (2022)

    Article  Google Scholar 

  11. Peng, X., et al.: Design of h-shape chamber in thermal bubble printer. Micromachines 13(2), 194 (2022)

    Article  Google Scholar 

  12. Kim, T., et al.: Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Appl. Phys. Lett. 104(11), 113103 (2014)

    Article  Google Scholar 

  13. Ko, S.H., Chung, J., Pan, H., Grigoropoulos, C.P., Poulikakos, D.: Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sens. Actuators A 134(1), 161–168 (2007)

    Article  Google Scholar 

  14. Beedasy, V., Smith, P.J.: Printed electronics as prepared by inkjet printing. Materials 13(3), 704 (2020)

    Article  Google Scholar 

  15. Rida, A., Yang, L., Vyas, R., Tentzeris, M.M.: Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antennas Propag. Mag.Propag. Mag. 51(3), 13–23 (2009)

    Article  Google Scholar 

  16. Ozcan, A., Tozluoglu, A., Kandirmaz, E.A., Tutus, A., Fidan, H.: Printability of variative nanocellulose derived papers. Cellulose 28(8), 5019–5031 (2021)

    Article  Google Scholar 

  17. Rudzik, T.J., Gerhardt, R.A.: Effect of spark plasma sintering current and voltage on the microstructure and electrical properties of borosilicate glass-indium tin oxide composites. Adv. Eng. Mater. 22(5), 1901431 (2020)

    Article  Google Scholar 

  18. Lei, W., et al.: Fabrication of electrospun polyetherimide/polyaniline self-supporting microfiber membranes as electrodes for flexible supercapacitors via in-situ polymerization. Colloids Surf. A 651, 129796 (2022)

    Article  Google Scholar 

  19. Butnaru, I., Serbezeanu, D., Bruma, M., Sava, I., Gaan, S., Fortunato, G.: Physical and thermal properties of poly(ethylene terephthalate) fabric coated with electrospun polyimide fibers. High Perform. Polym.Polym. 27(5), 616–624 (2015)

    Article  Google Scholar 

  20. Mallakpour, S., Zadehnazari, A.: Synthesis and characterization of novel heat stable and processable optically active poly(amide–imide) nanostructures bearing hydroxyl pendant group in an ionic green medium. J. Polym. Environ.Polym. Environ. 21, 132–140 (2012)

    Article  Google Scholar 

  21. Deng, D., Feng, S., Shi, M., Huang, C.: In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing. J. Mater. Sci. Mater. Electron. 28(20), 15411–15417 (2017)

    Article  Google Scholar 

  22. Tortorich, R., Choi, J.-W.: Inkjet printing of carbon nanotubes. Nanomaterials 3(3), 453–468 (2013)

    Article  Google Scholar 

  23. Raut, N.C., Al-Shamery, K.: Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6(7), 1618–1641 (2018)

    Article  Google Scholar 

  24. Kraft, U., Molina-Lopez, F., Son, D., Bao, Z., Murmann, B.: Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Adv. Electron. Mater. 6(1), 1900681 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 62371051, No. 61971049), the Projects of International Cooperation and Exchanges NSFC (No. 62211530446), and the Discipline construction of material science and engineering (No. 21090123007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanlan Hou or Ru** Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, L., Du, X., Duan, Q., Hou, L., Liu, R. (2024). Fabrication of Flexible Devices by Inkjet Printing. In: Song, H., Xu, M., Yang, L., Zhang, L., Yan, S. (eds) Innovative Technologies for Printing, Packaging and Digital Media. CACPP 2023. Lecture Notes in Electrical Engineering, vol 1144. Springer, Singapore. https://doi.org/10.1007/978-981-99-9955-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9955-2_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9954-5

  • Online ISBN: 978-981-99-9955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation