Electrocatalytic Properties of Fullerene-Based Materials

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 120 Accesses

Abstract

This chapter provides a comprehensive review of research related to the electrocatalytic properties of fullerenes and their derivatives. The paper begins with general information about problems that occur in electrocatalysis and its role in the modern technology of clean energy sources. Next, general information about fullerenes and their derivatives is presented. Additionally, their role in many applications is mentioned. An electrocatalytic area is noticed. Thus, chemical processes based on the electrocatalytic properties of fullerenes, and their derivatives are described. The electrocatalytic activity of materials such as doped, exo-, and endohedral fullerenes is described. Additionally, fullerene-like materials or materials formed from fullerenes are mentioned. Composite materials of fullerenes and carbon nanostructures, metal–organic frameworks, metal oxides, metallic nanoparticles, or bimetallic systems are discussed. Their electrocatalytic performance is compared to commercial catalysts used in these systems. To date, many different catalytic systems have been studied, and this scientific area is very broad. Recently, carbon nanomaterials have been studied intensively due to their unusual chemical and physical properties. Among them, special attention has also been paid to fullerenes as pure carbon allotropes with unique structures and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kobayashi, A., Fujii, T., Takeda, K., Tamoto, K., Kakinuma, K., Uchida, M.: Effect of Pt Loading percentage on carbon blacks with large interior nanopore volume on the performance and durability of polymer electrolyte fuel cells. ACS Appl. Energy Mater. 5, 316 (2022)

    Article  CAS  Google Scholar 

  2. Perazzolo, V., Grądzka, E., Durante, C., Pilot, R., Vicentini, N., Rizzi, G.A., Granozzi, G., Gennaro, A.: Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons. Electrochim. Acta 197, 251 (2016)

    Article  CAS  Google Scholar 

  3. Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Grądzka, E., Wysocka-Żołopa, M., Winkler, K.: Fullerene-based conducting polymers: n-dopable materials for charge storage application. Adv. Energy Mater. 10, 2001443 (2020)

    Article  Google Scholar 

  5. Perini, L., Durante, C., Favaro, M., Perazzolo, V., Agnoli, S., Schneider, O., Granozzi, G., Gennaro, A.: Metal−support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7, 1170 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Brandiele, R., Durante, C., Grądzka, E., Rizzi, G.A., Zheng, J., Badocco, D., Centomo, P., Pastore, P., Granozzi, G., Gennaro, A.: One step forward to a scalable synthesis of platinum–yttrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction. J. Mater. Chem. A 4, 12232 (2016)

    Article  CAS  Google Scholar 

  7. Hara, M., Lee, M., Liu, Ch-H., Chen, B-H., Yamashita, Y., Uchida, M., Uchida, H., Watanabe, M.: Electrochemical and Raman spectroscopic evaluation of Pt/graphitized carbon black catalyst durability for the start/stop operating condition of polymer electrolyte fuel cells. Electrochim. Acta 2012, 70, 171.

    Google Scholar 

  8. Mao, K., Zhang, W., Dai, J., Zeng, Z.C.: Carbon fragments as highly active metal-free catalysts for the oxygen reduction reaction: a mechanistic study. Nanoscale 11, 19422 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. Saianand, G., Gopalan, A.I., Lee, J.C., Sathish, C., Gopalakrishnan, K., Unni, G.E., Shanbhag, D., Dasireddy, V.D.B.C., Yi, J., **, S., Al-Muhtaseb, A.H., Vinu, A.: Mixed copper/copper-oxide anchored mesoporous fullerene nanohybrids as superior electrocatalysts toward oxygen reduction reaction. Small 16, 1903937 (2020)

    Article  CAS  Google Scholar 

  10. Sanad, M.F., Franklin, H.M., Ali, B.A., Puente Santiago, A.R., Nair, A.N., Chava, V.S.N., Fernandez-Delgado, O., Allam, N.K., Stevenson, S., Sreenivasan, S.T., Echegoyen, L.: Cylindrical C96 Fullertubes: a highly active metal-free O2-reduction electrocatalyst. Angew. Chem. Int. Ed., 61, e202116727 (2022)

    Google Scholar 

  11. Wang, Y., Jiao, M., Song, W., Wu, Z.: Doped fullerene as a metal-free electrocatalyst for oxygen reduction reaction: a first-principles study. Carbon 114, 393 (2017)

    Article  CAS  Google Scholar 

  12. Yang, S., Zhao, C., Qu, R., Cheng, Y., Liu, H., Huang, X.: Probing the activity of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe Co, and Ni) towards the oxygen reduction reaction by density functional theory. RSC Adv. 11, 3174 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, X., Zhang, H., Lai, N.: Endohedral metallofullerenes Mn@C60 (M = Mn Co, Ni, Cu; n = 2–5) as electrocatalysts for oxygen reduction reaction: a first-principles study. J. Mater. Sci. 55, 11382 (2020)

    Article  CAS  Google Scholar 

  14. Chen, X., Zhang, H., Li, X.: Mechanisms of fullerene and single-walled carbon nanotube composite as the metal-free multifunctional electrocatalyst for the oxygen reduction, oxygen evolution, and hydrogen evolution. Molecular Catalysis 502, 111383 (2021)

    Article  CAS  Google Scholar 

  15. Guan, J., Chen, X., Wei, T., Liu, F., Wang, S., Yang, Q., Lu, Y., Yang, S.: Directly bonded hybrid of graphene nanoplatelets and fullerene: facile solid-state mechanochemical synthesis and application as carbon-based electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 3, 4139 (2015)

    Article  CAS  Google Scholar 

  16. Basu, O., Mukhopadhyay, S., De, A., Das, A., Das, S.K.: Tuning the electrochemical and catalytic ORR performance of C60 by its encapsulation in ZIF-8: a solid-state analogue of dilute fullerene solution. Mater. Chem. Front. 5, 7654 (2021)

    Article  CAS  Google Scholar 

  17. Gao, S., Wei, X., Fan, H., Li, L., Geng, K., Wang, J.: Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 13, 518 (2015)

    Article  CAS  Google Scholar 

  18. Gong, K., Du, F., **a, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. He, Z., Wei, P., Chen, N., Han, J., Lu, X.: N, S-Co-doped porous carbon nanofiber films derived from fullerenes (C60) as efficient electrocatalysts for oxygen reduction and a Zn–air battery. Chem. Eur. J. 27, 1423 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Meng, F., Wang, S., Jiang, B., Ju, L., ** in fullerene-derived hollow carbon spheres and their synergistic effect for the oxygen reduction reaction. Nanoscale 14, 10389 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. Yu, A., Peng, Z., Li, Y., Zhu, L., Peng, P., Li, F.F.: Fullerene-derived carbon nanotubes and their electrocatalytic properties in oxygen reduction and Zn−air batteries. ACS Appl. Mater. Interfaces 14, 42337 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. Bhavani, K.S., Anusha, T., Kumar, J.V.S., Kumar Braham, P.: Enhanced electrocatalytic activity of methanol and ethanol oxidation in alkaline medium at bimetallic nanoparticles electrochemically decorated fullerene-C60 nanocomposite electrocatalyst: an efficient anode material for alcohol fuel cell applications. Electroanalysis, 33, 97 (2021)

    Google Scholar 

  23. Huang, H., Wang, X.: Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2, 5266 (2014)

    Google Scholar 

  24. Bhavani, K.S., Anusha, T., Kumar Braham, P.: Fabrication and characterization of gold nanoparticles and fullerene-C60 nanocomposite film at glassy carbon electrode as potential electrocatalyst towards the methanol oxidation. Int. J. Hydrogen. Energy, 44, 25863 (2019)

    Google Scholar 

  25. Zhang, X., Ma, L.X.: Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction. J. Power. Sources 286, 400 (2015)

    Article  CAS  Google Scholar 

  26. Lin, Z., Wang, H., Lei, M.: Solvent engineering of highly conductive and porous fullerene ammonium iodide for immobilizing Pd nanoparticles with enhanced electrocatalytic activity toward ethanol oxidation. Electrocatalysis, 10, 524 (2019)

    Google Scholar 

  27. Almeida, C.V.S., Almagro, L.E., Valerio Neto, E.S., Coro, J., Suarez, M., Eguiluz, K.I.B., Salazar-Banda, G.R.: Polyhydroxylated fullerenes: an efficient support for Pt electrocatalysts toward ethanol oxidation. J. Electroanal. Chem. 878, 114663 (2020)

    Google Scholar 

  28. Zhang, Q., Bai, Z., Shi, M., Yang, L., Qiao, J., Jiang, K.: High-efficiency palladium nanoparticles supported on hydroxypropyl-b-cyclodextrin modified fullerene [60] for ethanol oxidation. Electrochim. Acta 177, 113 (2015)

    Article  CAS  Google Scholar 

  29. Zhang, X., Zhang, J.W., **ang, P.H., Qiao, J.: Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation Reaction. Appl. Surf. Sci. 440, 477 (2018)

    Google Scholar 

  30. Zhang, L., **ao, J., Wang, H., Shao, M.: Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 7, 7855 (2017)

    Article  CAS  Google Scholar 

  31. You, B., Sun, Y.: Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. Pavel, C.C., Cecconi, F., Emiliani, C., Santiccioli, S., Scaffidi, A., Catanorchi, S., Comotti, M.: Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew. Chem. Int. Ed. 53, 1378 (2014)

    Article  CAS  Google Scholar 

  33. Narwade, S.S., Mulik, B.B., Mali, S.M., Sathe, B.R.: Silver nanoparticles sensitized C60(Ag@C60) as efficientelectrocatalysts for hydrazine oxidation: Implication for hydrogengeneration reaction. Appl. Surf. Sci. 396, 939 (2017)

    Article  CAS  Google Scholar 

  34. Narwade, S.S., Mali, S.M., Tanwade, P.N., Chavan, P.P., Munde, A.V., Sathe, B.R.: Highly efficient metal-free ethylenediamine-functionalized fullerene (EDA@C60) electrocatalytic system for enhanced hydrogen generation from hydrazine hydrate. New J. Chem. 46, 14004 (2022)

    Article  CAS  Google Scholar 

  35. Santiago, A.R.P., Sanad, M.F., Moreno-Vicente, A., Ahsan, M.A., Ceron, M.R., Yao, J.R., Sreenivasan, S.T., Rodriguez-Fortea, A., Poblet, J.M., Echegoyen, L.: A new class of molecular electrocatalysts for hydrogen evolution: catalytic activity of M3N@C2n (2n = 68, 78, and 80) fullerenes. J. Am. Chem. Soc. 143, 6037 (2021)

    Article  Google Scholar 

  36. Santiago, A.R.P., He, T., Eraso, O., Ahsan, M.A., Nair, A.N., Chava, V.S.N., Zheng, T., Pilla, S., Fernnadez-Delgado, O., Du, A., Sreenivasan, S.T., Echegoyen, L.: Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis. J. Am. Chem. Soc. 142, 17923 (2020)

    Article  Google Scholar 

  37. Hasan, M.H., Khedr, G.E., Allam, N.K.: C76 nanospheres/Ni foam as high-performance heterostructured electrocatalysts for hydrogen evolution reaction: unveiling the interfacial interaction. ACS Appl. Nano Mater. 5, 15457 (2022)

    Article  CAS  Google Scholar 

  38. He, T., Gao, G., Kou, L., Will, G., Du, A.: Endohedral metallofullerenes (M@C60) as efficient catalysts for highly active hydrogen evolution reaction. J. Catal. 354, 231 (2017)

    Article  CAS  Google Scholar 

  39. Luo, T., Huang, J., Hu, Y., Yuan, C., Chen, J., Cao, L., Kajiyoshi, K., Liu, Y., Zhao, Y., Li, Z., Feng, Y.: Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 33, 2213058 (2023)

    Article  CAS  Google Scholar 

  40. Munawar, T., Bashir, A., Nadeem, M.S., Mukhtar, F., Manzoor, S., Ashiq, M.N., Khan, S.A., Koc, M., Iqbal, F.: Electrochemical performance evaluation of bimetallic sulfide nanocomposite with fullerene (CeNdS/C60) for efficient oxygen evolution reaction (OER). Energy Fuels 37, 1370 (2023)

    Article  CAS  Google Scholar 

  41. Yang, S., Cheng, Y., Liu, H., Huang, X.: Heteroatom-doped fullerene C70 as non-metal electrocatalysts for oxygen reduction and oxygen evolution from computational study. Diam. Relat. Mater. 2022, 108954 (2022)

    Article  Google Scholar 

  42. **ao, H., Li, H., Li, X., Jiang, J.: Effect of the charge state on the catalytic activity of a fullerene-based bolecular electrocatalyst: a theoretical study. J. Phys. Chem. Lett. 13, 7392 (2022)

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X., Huang, S., Zhang, H.: Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: a density functional theory study. J. Alloys Compd. 894, 162508 (2022)

    Article  CAS  Google Scholar 

  44. Bashir, A., Munawar, T., Mukhtar, T., Nadeem, M.S., Manzoor, S., Ashiq, M.N., Khan, S.A., Koc, M., Iqbal, F.: Dual-functional fullerene supported NiO-based nanocomposite: efficient electrocatalyst for OER and photocatalyst for MB dye degradation. Mater. Chem. Phys. 293, 126886 (2023)

    Article  CAS  Google Scholar 

  45. Ahsan, M.A., He, T., Eid, K., Abdullah, A.M., Curry, M.L., Du, A., Puente Santiago, A.R., Echegoyen, L., Noveron, J.C.: Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 143, 1203 (2021)

    Google Scholar 

  46. El Diwany, F.A., Al Najjar, T., Allam, N.K., El Sawy, E.N.: Tungsten oxide/fullerene‑based nanocomposites as electrocatalysts and parasitic reactions inhibitors for VO2+/VO2+ in mixed‑acids. Sci. Rep. 12, 14348 (2022)

    Google Scholar 

  47. Fan, S., Yang, J., Wei, T., Zhang, J., Zhang, N., Chai, M., **, X., Wu, H.: Zinc porphyrin-fullerene derivative noncovalently functionalized graphene hybrid as interfacial material for electrocatalytic application. Talanta 160, 713 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. Bai, L., Chen, Y., Bai, Y., Chen, Y., Zhou, J., Huang, A.: Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133, 11 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Chhetri, M., Gupta, U., Yadgarov, L., Rosentsveig, R., Tenne, R., Rao, C.N.R.: Effects of p- and n-type do** in inorganic fullerene MoS2 on the hydrogen evolution reaction. ChemElectroChem 2016, 3 (1937)

    Google Scholar 

  50. Zhang, R., Li, Y., Zhou, X., Yu, A., Huang, Q., Xu, T., Zhu, L., Peng, P., Song, S., Echegoyen, L., Li, F.F.: Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nat. Commun. 14, 2460 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Grądzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grądzka, E. (2024). Electrocatalytic Properties of Fullerene-Based Materials. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_11

Download citation

Publish with us

Policies and ethics

Navigation