Nanocomposites of Carbon for Metal-Air Batteries

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 133 Accesses

Abstract

Extensive studies are being made on clean and sustainable energy conversion technologies to harness their potential in terms of great efficiency, large-scale uses, and negligible greenhouse gas emissions including fuel cells, metal-air batteries, and water-splitting techniques. Among them all, metal-air batteries are the most promising systems for portable electronic devices, electrical vehicles, and stationary microgrid applications due to their high energy density. However, the major limitation is the fundamental issues with their mechanism. The efficiency of energy conversion and storage is controlled by the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are generally very slow and require noble metal catalysts for fast operation. The high cost and limited availability of noble metals caused a growing interest in develo** metal-free carbons as a novel class of bifunctional electrocatalysts. These materials display exceptional strength, stability, conductivity, large surface area, and high stability in both acidic and alkaline environments and therefore can play a significant role in the field of clean energy storage/conversion technologies. In this chapter, the recent advances regarding the rational design of carbon-based electrocatalysts for the oxygen reduction reaction and oxygen evolution reaction are summarized, with a special focus on their applications in Zn–air and Li–air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, X., Li, T., Zhong, L., Lu, J.: Flexible metal–air batteries: an overview. SmartMat 2(2), 123–126 (2021). John Wiley & Sons Inc

    Google Scholar 

  2. Chen, Y., et al.: Metal-air batteries: progress and perspective. Sci Bull (Bei**g) 67(23), 2449–2486 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L., Shao, Q., Zhang, J.: An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Mater. Reports: Energy 1(1), 100002 (2021)

    Google Scholar 

  4. Zhang, X., Wang, X.G., **e, Z., Zhou, Z.: Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1(1), 4–17 (2016)

    Article  Google Scholar 

  5. Wen, X., Zhang, Q., Guan, J.: Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 409, 213214 (2020)

    Article  CAS  Google Scholar 

  6. Liu, Q., Pan, Z., Wang, E., An, L., Sun, G.: Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater 27, 478–505 (2020)

    Article  Google Scholar 

  7. Wang, Y.J., et al.: Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem. Eng. J. 348, 416–437 (2018)

    Article  CAS  Google Scholar 

  8. Velraj, S., Zhu, J.H.: Sm0.5Sr0.5CoO3−δ—A new bi-functional catalyst for rechargeable metal-air battery applications. J. Power. Sources 227, 48–52 (2013)

    Article  CAS  Google Scholar 

  9. Kraytsberg, A., Ein-Eli, Y.: Review on Li–air batteries—opportunities, limitations and perspective. J. Power. Sources 196(3), 886–893 (2011)

    Article  CAS  Google Scholar 

  10. Al Lawati, M.J., Jafary, T., Baawain, M.S., Al-Mamun, A.: A mini review on biofouling on air cathode of single chamber microbial fuel cell; prevention and mitigation strategies. Biocatal. Agric. Biotechnol. 22, 101370 (2019)

    Google Scholar 

  11. Wang, Z.L., Xu, D., Xu, J.J., Zhang, X.B.: Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22). Royal Soc. Chem., 7746–7786 (2014)

    Google Scholar 

  12. Li, Y., Lu, J.: Metal-Air Batteries: Will They Be Future Electrochemical Energy Storage of Choice, 2017. [Online]. Available: http://pubs.acs.org

  13. Haller, S., Gridin, V., Hofmann, K., Stark, R.W., Albert, B., Kramm, U.I.: Application of non-precious bifunctional catalysts for metal-air batteries. Energy Technol. 9(7) (2021)

    Google Scholar 

  14. Dresp, S., Strasser, P.: Non-noble metal oxides and their application as bifunctional catalyst in reversible fuel cells and rechargeable air batteries. ChemCatChem 10(18), 4162–4171 (2018)

    Article  CAS  Google Scholar 

  15. Cui, Z., Fu, G., Li, Y., Goodenough, J.B.: Ni3FeN‐supported Fe3Pt intermetallic nanoalloy as a high‐performance bifunctional catalyst for metal–air batteries. Angewandte Chemie International Edition, vol. 56, no. 33, pp. 9901–9905 (2017)

    Google Scholar 

  16. Huang, Y. et al.: Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries. Adv. Mater. 31(13). Wiley-VCH Verlag (2019)

    Google Scholar 

  17. Lai, L., et al.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012)

    Article  CAS  Google Scholar 

  18. Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., Yu, J.-S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134(39), 16127–16130 (2012)

    Google Scholar 

  19. Kong, X., Huang, Y., Liu, Q.: Two-dimensional boron-doped graphyne nanosheet: a new metal-free catalyst for oxygen evolution reaction. Carbon N Y 123, 558–564 (2017)

    Article  CAS  Google Scholar 

  20. Kang, X., et al.: Iron and boron-doped carbonized zeolitic imidazolate frameworks as efficient oxygen reduction electrocatalysts for Al-Air batteries. Int. J. Hydrogen Energy 46(73), 36221–36231 (2021)

    Article  CAS  Google Scholar 

  21. Fan, H., et al.: Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 34, 64–71 (2019)

    Article  Google Scholar 

  22. Liu, W., et al.: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery. Adv. Funct. Mater. 28(11), 1706675–1706675 (2018)

    Article  Google Scholar 

  23. Patra, S., Choudhary, R., Roy, E., Madhuri, R., Sharma, P.K.: Heteroatom-doped graphene ‘Idli’: a green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy 30, 118–129 (2016)

    Article  CAS  Google Scholar 

  24. Sun, Y.N., et al.: Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc–air batteries. Appl. Catal. B 297, 120448 (2021)

    Article  CAS  Google Scholar 

  25. Zhu, P., Gao, J., Chen, X., Liu, S.: An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery. Int. J. Hydrogen Energy 45(16), 9512–9521 (2020)

    Article  CAS  Google Scholar 

  26. Shao, Y., Park, S., **ao, J., Zhang, J.-G., Wang, Y., Liu, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2(5), 844–857 (2012)

    Google Scholar 

  27. Li, Q., Cao, R., Cho, J., Wu, G.: Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Phys. Chemistry Chem. Phys. 16(27), 13568–13582 (2014)

    Google Scholar 

  28. Tu, Y., Deng, D., Bao, X.: Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J. Energy Chem. 25(6), 957–966 (2016); Lin, X., Sun, Q., Davis, K.D., Li, R., Sun, X.: The application of carbon materials in nonaqueous Na–O2 batteries. Carbon Energy 1(2), 141–164 (2019)

    Google Scholar 

  29. Li, W., Han, C., Zhang, K., Chou, S., Dou, S.: Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal-air battery systems. J. Mater. Chem. A 9(11). Royal Society of Chemistry, pp. 6671–6693 (2021)

    Google Scholar 

  30. Wang, M., et al.: N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery. Int. J. Hydrogen Energy 40(46), 16230–16237 (2015)

    Article  CAS  Google Scholar 

  31. Niu, W., et al.: Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-Air batteries. Adv. Energy Mater. 8(1), 1701642–1701642 (2018)

    Article  Google Scholar 

  32. Wang, Q., et al.: Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn-air batteries. ACS Appl. Mater. Interfaces 10(35), 29448–29456 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Gehring, M., Tempel, H., Merlen, A., Schierholz, R., Eichel, R.A., Kungl, H.: Carbonisation temperature dependence of electrochemical activity of nitrogen-doped carbon fibres from electrospinning as air-cathodes for aqueous-alkaline metal-air batteries. RSC Adv. 9(47), 27231–27241 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lv, Q., et al.: Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B 261, 118234 (2020)

    Article  CAS  Google Scholar 

  35. Zhang, L., et al.: Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn–air battery and water electrocatalysis. ACS Nano 15(8), 13399–13414 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. Li, P., et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B 316, 121674 (2022)

    Article  CAS  Google Scholar 

  37. Wan, W., Liu, X., Li, H., Peng, X., **, D., Luo, J.: 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 240, 193–200 (2019)

    Article  CAS  Google Scholar 

  38. Yan, L., Wang, H., Shen, J., Ning, J., Zhong, Y., Hu, Y.: Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021)

    Article  CAS  Google Scholar 

  39. Xue, Y., Guo, Y., Zhang, Q., **e, Z., Wei, J., Zhou, Z.: MOF-Derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nanomicro Lett. 14(1) (2022)

    Google Scholar 

  40. Hu, X., et al.: Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 268, 118405 (2020)

    Article  CAS  Google Scholar 

  41. Chen, D., et al.: Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl. Catal. B 268, 118729 (2020)

    Article  CAS  Google Scholar 

  42. Liu, J., et al.: CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B 279, 119407 (2020)

    Article  CAS  Google Scholar 

  43. Xu, X., et al.: Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn−air battery. Adv. Powder Mater. 1(3), 100027 (2022)

    Article  Google Scholar 

  44. Kopiec, D., Kierzek, K.: Application of functionalized carbon nanotubes as the cathode of nonaqueous lithium-oxygen cells. Solid State Ion. 385, 116007 (2022)

    Article  CAS  Google Scholar 

  45. Wu, G., et al.: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11), 9764–9776 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. Wu, M.C., Zhao, T.S., Tan, P., Jiang, H.R., Zhu, X.B.: Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries. Electrochim. Acta 211, 545–551 (2016)

    Article  CAS  Google Scholar 

  47. Liu, Y., et al.: Conformal coating of heterogeneous CoO/Co nanocomposites on carbon nanotubes as efficient bifunctional electrocatalyst for Li-Air batteries. Electrochim. Acta 219, 560–567 (2016)

    Article  CAS  Google Scholar 

  48. Hang, Y., et al.: α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J. Power. Sources 392, 15–22 (2018)

    Article  CAS  Google Scholar 

  49. Zhai, Y., et al.: Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li–O2 batteries. J. Catal. 377, 534–542 (2019)

    Article  CAS  Google Scholar 

  50. Wang, J., Fan, M., Tu, W., Chen, K., Shen, Y., Zhang, H.: In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. J. Alloys Compd. 777, 944–953 (2019)

    Article  CAS  Google Scholar 

  51. Song, L., et al.: An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 71, 104595 (2020)

    Article  CAS  Google Scholar 

  52. Zhang, G., et al.: Phosphorus-doped carbon as cathode material for high energy nonaqueous Li–O2 batteries. Appl. Surf. Sci. 543, 148864 (2021)

    Article  CAS  Google Scholar 

  53. Inozemtseva, A.I., et al.: On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR. Carbon N Y 176, 632–641 (2021)

    Article  CAS  Google Scholar 

  54. Liang, H., Jia, L., Chen, F., **g, S., Tsiakaras, P.: A novel efficient electrocatalyst for oxygen reduction and oxygen evolution reaction in Li–O2 batteries: Co/CoSe embedded N, Se co-doped carbon. Appl. Catal. B 317, 121698 (2022)

    Article  CAS  Google Scholar 

  55. Wang, Y., Yu, M., Zhang, T., Xue, Z., Ma, Y., Sun, H.: Defect-rich boron doped carbon nanotubes as an electrocatalyst for hybrid Li–air batteries. Catal. Sci. Technol. 12(1), 332–338 (2022)

    Article  Google Scholar 

  56. Thakur, P., Puthirath, A.B., Ajayan, P.M., Narayanan, T.N.: Iron carbide decorated carbon nanosphere- sheet hybrid based rechargeable high-capacity non-aqueous Li–O2 batteries. Carbon N Y 196, 320–326 (2022)

    Article  CAS  Google Scholar 

  57. Salado, M., Lizundia, E.: Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 28, 101064 (2022)

    Article  CAS  Google Scholar 

  58. Yu, D., et al.: Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv. Energy Mater. 11(30), 2101242–2101242 (2021)

    Article  CAS  Google Scholar 

  59. Peng, L., Shang, L., Zhang, T., Geoffrey IN Waterhouse: Recent advances in the development of single‐atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10(48), 2003018–2003018 (2020)

    Google Scholar 

  60. Han, J., Meng, X., Lu, L., Bian, J., Li, Z., Sun, C.: Single‐atom Fe‐Nx‐C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872–1808872 (2019)

    Google Scholar 

  61. Wang, Y., et al.: Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS Nano 15(1), 210–239 (2021)

    Article  CAS  PubMed  Google Scholar 

  62. Zhong, L., et al.: Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 6(10), 3624–3633 (2021)

    Article  CAS  Google Scholar 

  63. Ma, Y., et al.: An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon N Y 185, 526–535 (2021)

    Article  CAS  Google Scholar 

  64. Wu, Y., et al.: Soft template-directed interlayer confinement synthesis of a Fe–Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater 45, 805–813 (2022)

    Article  Google Scholar 

  65. **a, Q. et al.: Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater. 2(3) (2022)

    Google Scholar 

  66. Nomura, A., Ito, K., Kubo, Y.: CNT Sheet air electrode for the development of ultra-high cell capacity in lithium-air batteries. Sci. Rep. 7 (2017)

    Google Scholar 

  67. Wang, S., Qin, J., Meng, T., Cao, M.: Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39, 626–638 (2017)

    Article  CAS  Google Scholar 

  68. Zong, L., et al.: Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett. 32(3), 1121–1126 (2021)

    Article  CAS  Google Scholar 

  69. Ji, D., et al.: Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon N Y 142, 379–387 (2019)

    Article  CAS  Google Scholar 

  70. Lu, L.N., Luo, Y.L., Liu, H.J., Chen, Y.X., **ao, K., Liu, Z.Q.: Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 427, 132041 (2022)

    Article  CAS  Google Scholar 

  71. Ye, M., Hu, F., Yu, D., Han, S., Li, L., Peng, S.: Hierarchical FeC/MnO2 composite with in-situ grown CNTs as an advanced trifunctional catalyst for water splitting and Metal−Air batteries. Ceram. Int. 47(13), 18424–18432 (2021)

    Article  CAS  Google Scholar 

  72. Li, P. et al.: Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal B 316 (2022)

    Google Scholar 

  73. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D.L.: Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021)

    Article  CAS  Google Scholar 

  74. Das, G.S., Hwang, J.Y., Jang, J.-H., Tripathi, K.M., Kim, T.Y.: Biomass-based functionalized graphene for self-rechargeable zinc–air batteries. ACS Appl. Energy Mater. 5(6), 6663–6670 (2022)

    Google Scholar 

  75. Wang, C., Ran, S., Sun, W., Zhu, Z.: Biomass-derived carbon materials with controllable preparation and their applications in zinc-air batteries: a mini review. Electrochem. Commun. 154, 107557 (2023)

    Article  CAS  Google Scholar 

  76. Sekhon, S.S., Lee, J., Park, J.S.: Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J. Energy Chem. 65, 149–172 (2022)

    Article  CAS  Google Scholar 

  77. Lim, B.A., Lim, S., Pang, Y.L., Shuit, S.H., Kuan, S.H.: Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries. Renew. Sustain. Energy Rev. 184 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, K., Jain, A. (2024). Nanocomposites of Carbon for Metal-Air Batteries. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9931-6_7

Download citation

Publish with us

Policies and ethics

Navigation