Semi-direct Sparse Odometry with Robust and Accurate Pose Estimation for Dynamic Scenes

  • Conference paper
  • First Online:
Computer-Aided Design and Computer Graphics (CADGraphics 2023)

Abstract

The localization accuracy and robustness of visual odometry systems for static scenes can be significantly degraded in complex real-world environments with moving objects. This paper addresses the problem by proposing a semi-direct sparse visual odometry (SDSO) method designed for dynamic scenes. With the aid of the pixel-level semantic information, the system can not only eliminate dynamic points but also construct more accurate photometric errors for subsequent optimization. To obtain an accurate and robust camera pose in dynamic scenes, we propose a dual error optimization strategy that minimizes the reprojection and photometric errors consecutively. The proposed method has been extensively evaluated on the public datasets like the TUM dynamic dataset and KITTI dataset. The results demonstrate the effectiveness of our method in terms of localization accuracy and robustness compared with both the original direct sparse odometry (DSO) method and state-of-the-art methods for dynamic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 70.61
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bescos, B., Campos, C., Tardós, J.D., Neira, J.: Dynaslam ii: tightly-coupled multi-object tracking and slam. IEEE Robot. Autom. Lett. 6(3), 5191–5198 (2021)

    Article  Google Scholar 

  3. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: tracking, map**, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  4. Chen, W., Fang, M., Liu, Y.H., Li, L.: Monocular semantic slam in dynamic street scene based on multiple object tracking. In: Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems, pp. 599–604 (2017)

    Google Scholar 

  5. Du, Z.J., Huang, S.S., Mu, T.J., Zhao, Q., Martin, R.R., Xu, K.: Accurate dynamic SLAM using CRF-based long-term consistency. IEEE Trans. Vis. Comput. Graph. 28(4), 1745–1757 (2022)

    Article  Google Scholar 

  6. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  7. Gao, X., Wang, R., Demmel, N., Cremers, D.: LDSO: direct sparse odometry with loop closure. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2198–2204 (2018)

    Google Scholar 

  8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)

    Article  Google Scholar 

  10. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  11. Kim, D.H., Kim, J.H.: Effective background model-based RGB-D dense visual odometry in a dynamic environment. IEEE Trans. Robot. 32(6), 1565–1573 (2016)

    Article  Google Scholar 

  12. Mohamed Chafik, B., Majdi, A., Ezzeddine, Z.: Dense 3D SLAM in dynamic scenes using kinect. In: Proceedings of the Pattern Recognition and Image Analysis, pp. 121–129 (2015)

    Google Scholar 

  13. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  14. Palazzolo, E., Behley, J., Lottes, P., Giguère, P., Stachniss, C.: Refusion: 3D reconstruction in dynamic environments for RGB-D cameras exploiting residuals. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7855–7862 (2019)

    Google Scholar 

  15. Bahraini, M.S., Bozorg, M., Rad, A.B.: Slam in dynamic environments via ML-RANSAC. Mechatronics 49, 105–118 (2018)

    Google Scholar 

  16. Scona, R., Jaimez, M., Petillot, Y.R., Fallon, M., Cremers, D.: Staticfusion: background reconstruction for dense RGB-D SLAM in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3849–3856 (2018)

    Google Scholar 

  17. Sheng, C., Pan, S., Gao, W., Tan, Y., Zhao, T.: Dynamic-DSO: direct sparse odometry using objects semantic information for dynamic environments. Appl. Sci. 10(4), 1467 (2020)

    Article  Google Scholar 

  18. Shi, J.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). Tomasi

    Google Scholar 

  19. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

  20. Sun, Y., Liu, M., Meng, Q.: Improving RGB-D SLAM in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2017)

    Article  Google Scholar 

  21. Teed, Z., Deng, J.: Droid-SLAM: deep visual SLAM for monocular, stereo, and RGB-D cameras (2021)

    Google Scholar 

  22. Wen, S., Li, P., Zhao, Y., Zhang, H., Sun, F., Wang, Z.: Semantic visual slam in dynamic environment. Auton. Robot. 45(4), 493–504 (2021)

    Article  Google Scholar 

  23. ** based on deep learning in dynamic environment. Robot. Auton. Syst. 117, 1–16 (2019)

    Article  Google Scholar 

  24. Younes, G., Asmar, D., Zelek, J.: A unified formulation for visual odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6237–6244 (2019)

    Google Scholar 

  25. Yu, C., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1168–1174 (2018)

    Google Scholar 

  26. Yu, M.F., Zhang, L., Wang, W.F., Wang, J.H.: SCP-SLAM: accelerating DynaSLAM with static confidence propagation. In: IEEE Conference Virtual Reality and 3D User Interfaces (VR), pp. 509–518 (2023)

    Google Scholar 

  27. Zhang, L., Wei, L., Shen, P., Wei, W., Zhu, G., Song, J.: Semantic slam based on object detection and improved octomap. IEEE Access 6, 75545–75559 (2018)

    Article  Google Scholar 

  28. Zhong, F., Wang, S., Zhang, Z., Chen, C., Wang, Y.: Detect-SLAM: making object detection and SLAM mutually beneficial. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1001–1010 (2018)

    Google Scholar 

  29. Zou, D., Tan, P.: Coslam: collaborative visual SLAM in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 354–366 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 62132012 and No. 62002020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Zhang, L. (2024). Semi-direct Sparse Odometry with Robust and Accurate Pose Estimation for Dynamic Scenes. In: Hu, SM., Cai, Y., Rosin, P. (eds) Computer-Aided Design and Computer Graphics. CADGraphics 2023. Lecture Notes in Computer Science, vol 14250. Springer, Singapore. https://doi.org/10.1007/978-981-99-9666-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9666-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9665-0

  • Online ISBN: 978-981-99-9666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation