Microbial Desalination Cell (MDC): A Next-Generation Environmental Technology for Wastewater Treatment and Bioelectricity Generation

  • Chapter
  • First Online:
Microbiology-2.0 Update for a Sustainable Future

Abstract

There are many high-performance desalination systems in use today, but almost all of them have a high energy requirement for operation as their principal drawback. However, taking MDCs into real applications may decrease environmental pollution, water shortages, energy consumption, and operating costs to be the greatest alternative to tackle these challenges. The MDC, a bioelectrochemical system (BES), is a development of the MFC technology. Utilizing the exoelectrogenic microbes found in effluents which transform biochemical energy locked in organic compounds into electrical energy facilitates the functioning of MDCs by treating water and wastewater, desalinating seawater, and producing electricity. However, the scaling-up initiative has been progressing gradually, which has left a disparity of knowledge for bringing MDC technology into the real world. This chapter discusses the fundamentals of MDC, it's microbiology, functioning, various configurations, and environmental applications in wastewater treatment and bioelectricity generation to serve as a reference for future studies investigating effective ways to desalinate water and wastewater and produce bioelectricity. To keep readers informed, the developments, challenges, and opportunities in MDC technology are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Mamun A, Ahmad W, Baawain MS, Khadem M, Dhar BR (2018) A Review of Microbial Desalination Cell Technology: Configurations, Optimization and Applications, Journal of Cleaner Production

    Google Scholar 

  • Abubakari Z.I, Mensah M, Buamah R, Abaidoo R.C (2019) Assessment of the electricity generation, desalination and wastewater treatment capacity of a plant microbial desalination cell (PMDC). Int J. Energy Water Resour. 3:213– 218

    Article  Google Scholar 

  • Ahuja S (2019) Global water challenges and solutions. Advances in Water Purification Techniques. Elsevier, pp. 17–39.

    Google Scholar 

  • Al-Mamun A, Ahmad W, Baawain MS, Khadem M, Dhar BR (2018b) A review of microbial desalination cell technology: Configurations, optimization, and applications. Journal of Cleaner Production 183:458–480.

    Google Scholar 

  • Alvarez F, Alvarez R, Coca J, Sandeaux J, Sandeaux R, & Gavach C. (1997). Salicylic acid production by electrodialysis with bipolar membranes. Journal of membrane science, 123(1):61-69.

    Article  Google Scholar 

  • Amma L, Ashraf F (2020) Brine management in reverse osmosis desalination: a UAE perspective. In: 2020 Advances in Science and Engineering Technology International Conferences (ASET).

    Google Scholar 

  • Beenish S, Ann D.C, Zhongtang Y, Anne C.C, Tansol P (2016) Simultaneous power generation and desalination of microbial desalination cells using Nannochloropsis salina (marine algae) versus potassium ferricyanide as catholytes. Environ. Eng. Sci., 1–12

    Google Scholar 

  • Bond D.R, Holmes D.E, Tender L.M, Lovley D.R (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485.

    Article  Google Scholar 

  • Bond D.R, Lovley D.R (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Env. Microbiol. 1548–1555.

    Google Scholar 

  • Bond D.R, Lovley D.R (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:2186–2189.

    Article  Google Scholar 

  • Buck R. P. (2014). Ion-selective membranes and electrodes, Access Science.

    Google Scholar 

  • Cao X, Huang X, Liang P, **ao K, Zhou Y, Zhang X, Logan B.E (2009a) A New Method for Water Desalination Using Microbial Desalination Cells. Environmental Science & Technology 43:7148–7152.

    Google Scholar 

  • Cao X, Huang X, Liang P, **ao K, Zhuo Y, Zhang X, Logan B.E (2009b). A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43:7148–7152.

    Google Scholar 

  • Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol. Lett. 31:1211–1216.

    Google Scholar 

  • Cath T.Y, Childress A.E, & Elimelech M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of membrane science, 281(1-2):70-87.

    Article  Google Scholar 

  • Chen S, Liu G, Zhang R, Qin B, & Luo Y. (2012a). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental science & technology, 46(4):2467–2472.

    Google Scholar 

  • Chen S, Liu G, Zhang R, Qin B, Luo Y, & Hou Y. (2012b). Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure. Bioresource technology, 116:507–511.

    Google Scholar 

  • Chen S, Luo H, Liu G, Zhang R, Wang H, Qin B, & Hou Y. (2013). Integrated utilization of seawater using a five-chamber bioelectrochemical system. Journal of membrane science, 444:16-21.

    Article  Google Scholar 

  • Chen X, Liang P, Wei Z, Zhang X, & Huang X. (2012c). Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation. Bioresource Technology, 119:88–93.

    Google Scholar 

  • Chen X, **a X, Liang P, Cao X, Sun H, & Huang X. (2011). Stacked microbial desalination cells to enhance water desalination efficiency. Environmental science & technology, 45(6):2465-2470.

    Article  Google Scholar 

  • Chen X, Zhou H, Zuo K.C, Zhou Y, Wang Q.Y, Sun D.Y, Gao Y.F, Liang P, Zhang X.Y, Ren Z.J, Huang X (2017) Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chem. Eng. J. 330:692–697.

    Article  Google Scholar 

  • Choi J, & Ahn Y. (2013). Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. Journal of environmental management, 130:146-152.

    Article  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K. and Verstraete W. (2007). Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental science & technology, 41(21):7564-7569.

    Article  Google Scholar 

  • Cusick RD, Hatzell M, Zhang F, Logan BE (2013) Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells. Environmental science & technology 47:14518-14524.

    Article  Google Scholar 

  • Das D (2017) Microbial Fuel Cell: A Bioelectrochemical System That Converts Waste to Watts; Springer International Publishing: Berlin/Heidelberg, Germany, pp. 1–506.

    Google Scholar 

  • Davis R.J, Kim Y, Logan B.E (2013) Increasing desalination by mitigating anolyte pH imbalance using catholyte effluent addition in a multi-anode bench scale microbial desalination cell. ACS Sust. Chem. Eng. 1(9):1200–1206.

    Article  Google Scholar 

  • Dong Y, Liu J, Sui M, Qu Y, Ambuchi JJ, Wang H (2017) A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and highsalinity- water desalination. Journal of Hazardous materials 321:307-315.

    Article  Google Scholar 

  • Ebrahimi A, Kebria D.Y. and Najafpour G.D (2018) Co-treatment of septage and municipal wastewater in a quadripartite microbial desalination cell. Chemical Engineering Journal, 354:1092-1099.

    Article  Google Scholar 

  • Fan Y, Miguez-Macho G, Weaver C.P, Walko R, Robock A (2007) Climate and Dynamics-D10125-Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations.

    Google Scholar 

  • Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hu H, Yu C.P (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 9:113379.

    Article  Google Scholar 

  • Forrestal C, Xu P, Jenkins P.E, Ren Z, (2012a) Microbial desalination cell with capacitive adsorption for ion migration control. Bioresource technology 120:332–336.

    Google Scholar 

  • Forrestal C, Xu P, Ren Z (2012b). Sustainable desalination using a microbial capacitive desalination cell. Energy & Environmental Science 5:7161–7167.

    Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, & Keller J. (2008). Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water research, 42(6-7):1387-1396.

    Article  Google Scholar 

  • Ge Z, Dosoretz C.G, He Z (2014) Effects of number of cell pairs on the performance of microbial desalination cells. Desalination 341:101-106.

    Article  Google Scholar 

  • Guang L, Ato-Koomson D, **gyu H, Ewusi-Mensah D, Miwornunyuie N (2020) Performance of exoelectrogenic bacteria used in microbial desalination cell technology. Int. J. Environ. Res. Public Health 17:1121.

    Article  Google Scholar 

  • Gude V.G, B. Kokabian, V. Gadhamshetty (2013a) Beneficial bioelectrochemical systems for energy, water, and biomass production, Microb. Biochem. Technol. S6:1–14.

    Google Scholar 

  • Gude V.G, Kokabian B, & Gadhamshetty V. (2013b). Beneficial bioelectrochemical systems for energy, water, and biomass production. Journal of Microbial & Biochemical Technology, 6:2.

    Google Scholar 

  • He Z, Huang Y, Manohar A. K, & Mansfeld F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74(1):78-82.

    Article  Google Scholar 

  • Holmes D.E, Bond D.R, Lovley D.R (2004) Electron Transfer by Desulfobulbus propionicus to Fe ( III ) and Graphite Electrodes Electron Transfer by Desulfobulbus propionicus to Fe ( III ) and Graphite Electrod. Appl. Environ. Microbiol. 70:1234–1237.

    Article  Google Scholar 

  • Huang G, Wang H, Zhao H, Wu P, Yan Q (2018) Application of polypyrrole modified cathode in bio-electro-Fenton coupled with microbial desalination cell (MDC) for enhanced degradation of methylene blue. J. Power Sources 400:350–359.

    Article  Google Scholar 

  • Imoro A. Z, Mensah M & Buamah R (2021). Developments in the microbial desalination cell technology: A review. Water-Energy Nexus, 4:76-87.

    Article  Google Scholar 

  • Jacobson K. S, Drew D. M & He Z (2011a). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource technology, 102(1):376–380.

    Google Scholar 

  • Jacobson K.S, Drew D.M, He Z (2011b). Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ. Sci. Technol. 45:4652–4657.

    Google Scholar 

  • Jafary T, Daud WRW, Aljlil SA, Ismail AF, Al-Mamun A, Baawain MS (2018) Simultaneous organics, sulphate and salt removal in a microbial desalination cell with an insight into microbial communities. Desalination 445:204-212.

    Article  Google Scholar 

  • **gyu H, Ewusi-Mensah D, Norgbey E (2017) Microbial desalination cells technology: A review of the factors affecting the process, performance and e_ciency. Desalin. Water Treat. 87:40–159.

    Article  Google Scholar 

  • Kalleary S, Mohammed Abbas F, Ganesan A, Meenatchisundaram S, Srinivasan B, Packirisamy A.S.B, Kesavan R.K, Muthusamy S (2014) Biodegradation and bioelectricity generation by Microbial Desalination Cell. Int. Biodeterior. Biodegrad. 92:20–25.

    Article  Google Scholar 

  • Karagiannis I.C, Soldatos P.G (2008) Water desalination cost literature: review and assessment. Desalination 223(1–3):448–456.

    Article  Google Scholar 

  • Kim H.J, Park H.S, Hyun M.S, Chang I.S, Kim M, Kim B.H (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30:145–152.

    Article  Google Scholar 

  • Kim J. R, Cheng S, Oh S. E, & Logan B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental science & technology, 41(3):1004-1009.

    Article  Google Scholar 

  • Kim Y, & Logan B. E. (2011a). Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental science & technology, 45(13):5840–5845.

    Google Scholar 

  • Kim Y, Logan BE (2011b) Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences 108:16176–16181.

    Google Scholar 

  • Kim Y, Logan BE (2011c) Microbial reverse electrodialysis cells for synergistically enhanced power production. Environmental science & technology 45:5834–5839.

    Google Scholar 

  • Kim S.K, Kim Y.C, Lee S, Kim J.C, Yun M.Y, Kim I.S (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae) J. Agric. Food Chem. 59:934–938.

    Google Scholar 

  • Kim Y & Logan B.E (2013a). Microbial desalination cells for energy production and desalination. Desalination, 308:122–130.

    Google Scholar 

  • Kim Y, Logan B.E (2013b) Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination 308:115–121.

    Google Scholar 

  • Kim E.J, Fathoni A, Jeong G.T, Jeong H.D, Nam T.J, Kong I.S, Kim J.K (2013) Microbacterium oxydans, a novel alginatev and laminarin-degrading bacterium for the reutilization of brown-seaweed waste. J. Environ. Manage. 130(10):153–159.

    Google Scholar 

  • Kokabian B, Gude V.G (2013). Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ. Sci.: Processes & Impacts 15:2178–2185.

    Google Scholar 

  • Kumar R, Singh L, Zularisam A.W (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 56:1322–1336.

    Article  Google Scholar 

  • Liang Y, Feng H, Shen D, Li N, Long Y, Zhou Y, Gu Y, Ying X, Dai Q (2016). A high-performance photo-microbial desalination cell. Electrochim. Acta 202:197–202

    Article  Google Scholar 

  • Liu C, Gallagher J.J, Sakimoto K.K, Nichols E.M, Chang C.J, Chang M.C, Yang P (2015) Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15:3634–3639.

    Article  Google Scholar 

  • Liu F, Luo S, Wang H, Zuo K, Wang L, Zhang X (2019a) Improving wastewater treatment capacity by optimizing hydraulic retention time of dual-anode assembled microbial desalination cell system. Separation and Purification Technology 226:39–47.

    Google Scholar 

  • Liu F, Wang L, Zuo K, Luo S, Zhang X, Liang P (2019b) A novel operational strategy to enhance wastewater treatment with dual-anode assembled microbial desalination cell. Bioelectrochemistry 126:99–104.

    Google Scholar 

  • Logan B.E (2008) Microbial fuel Cells. John Wiley and Sons Inc, New Jersey.

    Google Scholar 

  • Logan B.E (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375–381.

    Article  Google Scholar 

  • Logan B.E, Hamelers B, Rozendal R.A, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environmental Science and Technology 40(17):5181–5192.

    Article  Google Scholar 

  • Lu Y, He Z (2015) Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor – electrodialysis system. Environ. Sci.Technol. 49 (17).

    Google Scholar 

  • Luo H, Jenkins P. E, & Ren Z. (2011). Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environmental science & technology, 45(1):340-344.

    Article  Google Scholar 

  • Luo H, Xu P, Jenkins P.E, Ren Z (2012a) Ionic composition and transport mechanisms in microbial desalination cells. Journal of membrane science 409:16–23.

    Google Scholar 

  • Luo H, Xu P, Roane T.M, Jenkins P.E, Ren Z (2012b) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour. Technol.105:60–66.

    Google Scholar 

  • M.T. Madigan, J.M. Martinko (2006) Brook Biology of Microorganisms, 11th ed. Pearson Education, Upper Saddle River, 2006.

    Google Scholar 

  • Manzoor K, Khan S, Jamal Y, Shahzad M (2017) Heat extraction and brine management from salinity gradient solar pond and membrane distillation. Chem. Eng. Res. Des. 118: 226–237.

    Article  Google Scholar 

  • Mathioulakis E, Belessiotis V, Delyannis E (2007). Desalination by using alternative energy: review and state-of-art. Desalination 203:346–365.

    Article  Google Scholar 

  • Mehanna M, Kiely P. D, Call D. F, & Logan B. E. (2010a). Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental science & technology, 44(24):9578–9583.

    Google Scholar 

  • Mehanna M, Saito T, Yan J, Hickner M, Cao X, Huang X, & Logan B. E. (2010b). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy & Environmental Science, 3(8):1114–1120.

    Google Scholar 

  • Meng F, Jiang J, Zhao Q, Wang K, Zhang G, Fan Q, Wei L, Ding J, Zheng Z (2014) Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology 157:120-126.

    Article  Google Scholar 

  • Mengqi C, Yanan L, **nshan S, Yuhui W, Zhang Y (2021) A new constructed wetland combined with microbial desalination cell and its application.

    Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma P.N (2010) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. Journal of Hazardous Materials 177(1–3):487–494.

    Article  Google Scholar 

  • Morel A, Zuo K, **a X, Wei J, Luo X, Liang P, Huang X (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresource Technology 118:43-48.

    Article  Google Scholar 

  • Park H.S, Kim B.H, Kim H.S, Kim H.J, Kim G.T, Kim M, Chang I.S, Park Y.K, Chang H.I (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306.

    Article  Google Scholar 

  • ** Q, He Z (2013) Improving the flexibility of microbial desalination cells through spatially decoupling anode and cathode. Bioresour. Technol. 144:304–310.

    Google Scholar 

  • ** Q, & He Z. (2014). Effects of inter-membrane distance and hydraulic retention time on the desalination performance of microbial desalination cells. Desalination and Water Treatment, 52(7-9):1324-1331.

    Article  Google Scholar 

  • ** Q, Abu-Reesh I.M, He Z (2015a) Boron removal from saline water by a microbial desalination cell integrated with Donnan dialysis. Desalination 376:55–61.

    Google Scholar 

  • ** Q, Cohen B, Dosoretz C, He Z (2013) Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. Desalination 325:48-55.

    Article  Google Scholar 

  • ** Q, Huang Z, Dosoretz C, He Z (2015b) Integrated experimental investigation and mathematical modeling of brackish water desalination and wastewater treatment in microbial desalination cells. Water Research 77:13–23.

    Google Scholar 

  • ** Q, Zhang C, Chen X, Zhang B, Huang Z, He Z (2014) Mathematical Model of Dynamic Behavior of Microbial Desalination Cells for Simultaneous Wastewater Treatment and Water Desalination. Environmental Science & Technology 48:13010-13019.

    Article  Google Scholar 

  • Qian F, Wang H, Ling Y, Wang G, Thelen M.P, Li Y (2014). Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Lett. 14:3688–3693.

    Article  Google Scholar 

  • Qu Y, Feng Y, Liu J, He W, Shi X, Yang Q, Lv J, Logan B.E (2013) Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination 317:17-22.

    Article  Google Scholar 

  • Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, & Logan B. E. (2012). Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource technology, 106:89-94.

    Article  Google Scholar 

  • Rabaey K (2009) Bioelectrochemical systems: a new approach towards environmental and industrial biotechnology. Bioelectrochemical systems: From extracellular electron transfer to biotechnological application. IWA Publishing, 1-16.

    Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production. enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39(9):3401–3408.

    Google Scholar 

  • Rabaey K, Nico B, Steven D.S, Marc V, Marc V, Verstraete W (2004) Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer Korneel. Appl. Environ. Microbiol. 70:5373–5382.

    Article  Google Scholar 

  • Rikame S.S, Mungray A.A, Mungray A.K (2012) Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int. Biodeterior. Biodegradation 75:131–137.

    Google Scholar 

  • Rozendal R.A, Hamelers H.V, Rabaey K, Keller J, Buisman C.J (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26 (8):450–459.

    Article  Google Scholar 

  • Rozendal R.A, Hamelers H.V.M, Buisman C.J.N (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science and Technology 40(17):5206–5211.

    Article  Google Scholar 

  • Rusyn I (2021) Role of microbial community and plant species in performance of plant microbial fuel cells. Renew. Sustain. Energy Rev. 152:111697.

    Google Scholar 

  • Saeed H.M, Husseini G.A, Yousef S, Saif J, Al-Asheh S, Abu Fara A, Azzam S, Khawaga, R, Aidan A (2015) Microbial desalination cell technology: A review and a case study. Desalination 359:1–13. https://doi.org/10.1016/j.desal.2014.12.024

    Article  Google Scholar 

  • Salehmin M.N.I, Lim S.S, Satar I. and Daud W.R.W (2021) Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects. Science of the Total Environment, 759, p.143485.

    Article  Google Scholar 

  • Shannon M.A, Bohn P.W, Elimelech M, Georgiadis J.G, Marinas B.J, Mayes A.M (2008) Science and technology for water purification in the coming decades. Nature 452 (7185): 301–310.

    Article  Google Scholar 

  • Shehab N.A, Logan B.E, Amy G.L, Saikaly P.E (2013) Microbial Electrodeionization Cell Stack for Sustainable Desalination, Wastewater Treatment and Energy Recovery. Proceedings of the Water Environment Federation 222–227.

    Google Scholar 

  • Shinde O.A, Bansal A, Banerjee A, Sarkar S (2018) Bioremediation of steel plant wastewater and enhanced electricity generation in Microbial desalination cell. Water Sci. Technol. 77: 2101–2112.

    Article  Google Scholar 

  • Stoll Z.A, Forrestal C, Ren Z.J, Xu P (2015). Shale gas produced water treatment using innovative microbial capacitive desalination cell. Journal of hazardous materials 283:847-855.

    Article  Google Scholar 

  • Strathmann H. (2004). Ion-exchange membrane separation processes. Elsevier.

    Google Scholar 

  • Utami T.S, Arbianti R, Manaf B.N (2015) Sea water desalination using Debaryomyces hansenii with microbial desalination cell technology. Int. J. Technol. 6:1094–1100.

    Article  Google Scholar 

  • Wang Y, Xu A, Cui T, Zhang J, Yu H, Han W, Shen J, Li J, Sun X, Wang L (2020) Construction and application of a 1-liter upflow-stacked microbial desalination cell. Chemosphere 248:126028

    Article  Google Scholar 

  • Wen Q, Zhang H, Chen Z, Li Y, Nan J, & Feng Y. (2012). Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresource Technology, 125:108-113.

    Article  Google Scholar 

  • Wen Q, Zhang H, Yang H, Chen Z, Nan J, Feng Y (2014) Improving desalination by coupling membrane capacitive deionization with microbial desalination cell. Desalination 354:23–29.

    Article  Google Scholar 

  • Werner C.M, Logan B.E, Saikaly P.E, & Amy G. L. (2013). Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. Journal of membrane science, 428:116-122.

    Article  Google Scholar 

  • Won DH, Choi CH, Chung J, Woo SI (2014) Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation. Applied Catalysis B: Environmental 158:217- 223.

    Article  Google Scholar 

  • Ye B, Luo H, Lu Y, Liu G, Zhang R, Li X (2017) Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages. Bioresource Technology 244:913-919

    Article  Google Scholar 

  • Yuan H.Y, Abu-Reesh I.M, He Z (2015) Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chem. Eng.J. 270:437–443.

    Article  Google Scholar 

  • Yuan L, Yang X, Liang P, Wang L, Huang Z. H, Wei J, & Huang X. (2012a). Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource technology, 110:735–738.

    Google Scholar 

  • Yuan L, Yang X, Liang P, Wang L, Huang Z-H, Wei J (2012b) Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology 110:735–738.

    Google Scholar 

  • Yuan Z.G, Pratt S, Batstone D.J (2012c) Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotech. 23:878–883.

    Google Scholar 

  • Zang G.-L, Sheng G.-P, Shi C, Wang Y.-K, Li W.-W, Yu H.-Q (2014) A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production. Energy Environ. Sci. 7:3033–3039.

    Article  Google Scholar 

  • Zhang B, & He Z. (2012a). Energy production, use and saving in a bioelectrochemical desalination system. RSC advances, 2(28):10673–10679.

    Google Scholar 

  • Zhang B, & He Z. (2012b). Integrated salinity reduction and water recovery in an osmotic microbial desalination cell. Rsc Advances, 2(8):3265–3269.

    Google Scholar 

  • Zhang C, Liu G, Zhang R, Luo H (2010a) Electricity production from and biodegradation of quinoline in the microbial fuel cell. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. 45:250–256.

    Google Scholar 

  • Zhang F, Brastad K.S, & He Z. (2011). Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environmental science & technology, 45(15):6690-6696..

    Article  Google Scholar 

  • Zhang F, Chen M, Zhang Y, Zeng R.J (2012) Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science 417–418, 28-33.

    Article  Google Scholar 

  • Zhang F, He Z (2015) Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalination 360:28–34.

    Article  Google Scholar 

  • Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 2006: 2257–2259.

    Article  Google Scholar 

  • Zhang X, Cheng S, Huang X, Logan BE (2010b) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors and Bioelectronics 25:1825–1828.

    Google Scholar 

  • Zhang Y, Angelidaki I (2013) A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). Water Res. 47 (5): 1827–1836.

    Article  Google Scholar 

  • Zhang W, Wei C, Yan B et al (2013) Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants. Environ. Sci. Pollut. Res. 20:6418–6432.

    Google Scholar 

  • Zhang Y.F and Angelidaki I (2015a) Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia. Bioresource Technology 177:233–239.

    Google Scholar 

  • Zhang Y.F. and Angelidaki I (2015b) Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell. Biotechnology and Bioengineering 112(7):1478–1482.

    Google Scholar 

  • Zhang, Y.F. and Angelidaki, I. (2015c). Bioelectrochemical recovery of waste‐derived volatile fatty acids and production of hydrogen and alkali. Water Research 81:188–195.

    Google Scholar 

  • Zhao S, Zou L, Tang C. Y, & Mulcahy D. (2012). Recent developments in forward osmosis: Opportunities and challenges. Journal of membrane science, 396:1-21.

    Article  Google Scholar 

  • Zuo K, Liu F, Ren S, Zhang X, Liang P, Huang X (2016) A novel multi-stage microbial desalination cell for simultaneous desalination and enhanced organics and nitrogen removal from domestic wastewater. Environ. Sci. Water Res. Technol. 2:832–837.

    Article  Google Scholar 

  • Zuo K, Yuan L, Wei J, Liang P, Huang X (2013). Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell. Bioresource Technology 146:637-642

    Article  Google Scholar 

  • Zuo K.C, Cai J.X, Liang, S, Wu S.J, Zhang C.Y, Liang P, Huang X (2014) A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination. Environ. Sci. Technol. 48:9917–9924.

    Article  Google Scholar 

  • Zuo K.C, Chen M.S, Liu F.B, **ao K, Zuo J.L, Cao X.X, Zhang X.Y, Liang P, Huang X (2018) Coupling microfiltration membrane with biocathode microbial desalination cell enhances advanced purification and long-term stability for treatment of domestic wastewater. J. Membr. Sci. 547:34–42.

    Article  Google Scholar 

  • Zuo Y, **ng D, Regan J.M, Logan B.E (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropic YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74:3130–3137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, K. et al. (2024). Microbial Desalination Cell (MDC): A Next-Generation Environmental Technology for Wastewater Treatment and Bioelectricity Generation. In: Gupta, J., Verma, A. (eds) Microbiology-2.0 Update for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-99-9617-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9617-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9616-2

  • Online ISBN: 978-981-99-9617-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation