Deciphering the Role of Nanomedicines for the Treatment of Ischemic Stroke

  • Chapter
  • First Online:
Theranostic Applications of Nanotechnology in Neurological Disorders

Abstract

Ischemic stroke (IS) affects 15 million people globally which leads to death or disability. Currently, Tissue plasminogen activator (tPA) is the only medication approved by the US Food and Drug Administration (FDA) for treating IS. This treatment eliminates the brain’s blood shortage and the reperfusion-related adverse effects that cause significant tissue damage. Therefore, novel treatment approaches are urgently needed to preserve the integrity of the blood-brain barrier (BBB) and salvageable brain tissue. Nanomedicine opens a new door for emerging strategies that can be promising therapeutic approaches for IS. This chapter first discusses the pathophysiology and different events of IS, then available therapeutic interventions for IS followed by different nanocarriers available. This chapter also covers viral vectors and extracellular vesicles for IS. Also, it focuses on the intranasal administration of nanomedicines, which might cross the BBB and finally discusses toxicity related to nanocarriers for IS. This chapter is completely focused on using nanomedicines for the use of IS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al-Soufi W, Blanco M, Castillo J, Ramos-Cabrer P (2014) In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics 4(1):90–105

    Article  CAS  Google Scholar 

  • Ahmad N, Umar S, Ashafaq M, Akhtar M, Iqbal Z, Samim M et al (2013) A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 250(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Samim M et al (2016) Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. Int J Biol Macromol 91:640–655

    Article  CAS  PubMed  Google Scholar 

  • Alavian F, Shams N (2020) Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: considering its advantages and disadvantages. Curr Clin Pharmacol 15(1):20–29

    PubMed  PubMed Central  Google Scholar 

  • Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B (2020) Nanocarriers for stroke therapy: advances and obstacles in translating animal studies. Int J Nanomedicine 15:445–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O (2017) Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 5(48):9452–9476

    Article  CAS  PubMed  Google Scholar 

  • András IE, Toborek M (2015) Extracellular vesicles of the blood-brain barrier. Tissue Barriers 4(1):e1131804

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora P, Sharma S, Garg S (2002) Permeability issues in nasal drug delivery. Drug Discov Today 7(18):967–975

    Article  CAS  PubMed  Google Scholar 

  • Aswathi MK, Ajitha AR, Akhina H, Mathews LP, Thomas S (2018) Quantum dots: a promising tool for biomedical application. JSM Nanotechnol Nanomed 6(2):1066

    Google Scholar 

  • Ballarin B, Tymianski M (2018) Discovery and development of NA-1 for the treatment of acute ischemic stroke. Acta Pharmacol Sin 39(5):661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal S, Sangha KS, Khatri P (2013) Drug treatment of acute ischemic stroke. Am J Cardiovasc Drugs 13(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Zhou S, Pan S, Zhang Y (2018) Molecular mechanism exploration of ischemic stroke by integrating mRNA and miRNA expression profiles. Clin Lab 64(4):559–568

    CAS  PubMed  Google Scholar 

  • Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A 107(51):22038–22043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, Borm P, Estrada G, Ntziachristos V, Razansky D (2010) Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D et al (2012) Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant 21(4):723–737

    Article  PubMed  Google Scholar 

  • Brasseur F, Couvreur P, Kante B, Deckers-Passau L, Roland M, Deckers C, Speiser P (1980) Actinomycin D absorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor. Eur J Cancer 16(11):1441–1445

    Article  CAS  Google Scholar 

  • Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM et al (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70

    Article  PubMed  Google Scholar 

  • Castro E, Hernandez Garcia A, Zavala G, Echegoyen L (2017) Fullerenes in biology and medicine. J Mater Chem B 5(32):6523–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamorro A, Dirnagl U, Urra X, Plannas AM (2016) Neurology, neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary V (2022) Prospects of green nanotechnology for efficient management of neurodegenerative diseases. Front Nanotechnol 4:1055708.

    Google Scholar 

  • Chaudhary V et al (2023) Biogenic green metal nano systems as efficient anti-cancer agents. Environ Res 229:115933

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142(3):299–311

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Huang J, Hu Y, Khoshnam SE, Sarkaki A (2020) Mitochondrial transfer as a therapeutic strategy against ischemic stroke. Transl Stroke Res 11(6):1214–1228

    Article  PubMed  Google Scholar 

  • Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P (2017) Viral vectors for therapy of neurologic diseases. Neuropharmacology 120:63–80

    Article  CAS  PubMed  Google Scholar 

  • Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM et al (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond) 8(7):1191–1208

    Article  CAS  PubMed  Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider YJ, PrĂ©at V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Dmytriw AA, Phan K, Maingard J, Mobbs RJ, Brooks M, Chen K et al (2020) Endovascular thrombectomy for tandem acute ischemic stroke associated with cervical artery dissection: a systematic review and meta-analysis. Neuroradiology 62(7):861–866

    Article  PubMed  Google Scholar 

  • Domenico L, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:3702518

    Google Scholar 

  • Fernandes LF, Bruch GE, Massensini AR, FrĂ©zard F (2018) Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci 12:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer U, Kaesmacher J, Mendes Pereira V, Chapot R, Siddiqui AH, Froehler MT et al (2017) Direct mechanical thrombectomy versus combined intravenous and mechanical thrombectomy in large-artery anterior circulation stroke: a topical review. Stroke 48(10):2912–2918

    Article  PubMed  Google Scholar 

  • Friedrich B, Gawlitza M, Fahnert J, Quäschling U, Kahn T, Lobsien D et al (2016) Interventional ischemic stroke treatment—a revolution. Rofo 188(3):259–267

    CAS  PubMed  Google Scholar 

  • Fukuta T, Ishii T, Asai T, Nakamura G, Takeuchi Y, Sato A, Agato Y, Shimizu K, Akai S, Fukumoto D, Harada N, Tsukada H, Kawaguchi AT, Oku N (2014) Real-time trafficking of PEGylated liposomes in the rodent focal brain ischemia analyzed by positron emission tomography. Artif Organs 38(8):662–666

    Article  CAS  PubMed  Google Scholar 

  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 42(4):337–343

    Article  PubMed  Google Scholar 

  • Gascon S, Sobrado M, Roda JM, Rodriguez-Pena A, Diaz-Guerra M (2008) Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD- 95. Mol Psychiatry 13(1):99–114

    Article  CAS  PubMed  Google Scholar 

  • George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87(2):297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S et al (2022) Graphene quantum dots as a potential diagnostic and therapeutic tool for the management of Alzheimer’s disease. Carbon Letters 32:1381–1394.

    Google Scholar 

  • Granada-RamĂ­rez DA, Arias-CerĂłn JS, Rodriguez-Fragoso P, Vázquez-Hernández F, Luna-Arias JP, Herrera-Perez JL et al (2018) Chapter 16: Quantum dots for biomedical applications. In: Narayan R (ed) Nanobiomaterials. Woodhead Publishing, Sawston, pp 411–436

    Chapter  Google Scholar 

  • Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B (2017) Chapter 5: Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, pp 67–108

    Google Scholar 

  • Guruswamy R, ElAli A (2017) Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci 18(3):496

    Article  PubMed  PubMed Central  Google Scholar 

  • Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K (2020) Carbon nanostructures: the drug and the delivery system for brain disorders. Int J Pharm 587:119701

    Article  CAS  PubMed  Google Scholar 

  • Hill VA, Towfighi A (2017) Modifiable risk factors for stroke and strategies for stroke prevention. Semin Neurol 37(3):237–258

    Article  PubMed  Google Scholar 

  • Hong KL, Zheng WW, Baker A, Papahadjopoulos D (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)- phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 400(2):233–237

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FI, Lien LM, Chen ST, Bai CH, Sun MC, Tseng HP, et al.; Taiwan Stroke Registry Investigators (2010) Get with the guidelines-stroke performance indicators: surveillance of stroke care in the Taiwan stroke registry: get with the guidelines-stroke in Taiwan. Circulation 122(11):1116–1123

    Google Scholar 

  • Hsieh FY, Zhilenkov AV, Voronov II, Khakina EA, Mischenko DV, Troshin PA et al (2017) Water-soluble fullerene derivatives as brain medicine: surface chemistry determines if they are neuroprotective and antitumor. ACS Appl Mater Interfaces 9(13):11482–11492

    Article  CAS  PubMed  Google Scholar 

  • Hunter JE, Ramos L, Wolfe JH (2017) Viral vectors in the CNS. In: Reference module: neuroscience and biobehavioral psychology. Elsevier, Amsterdam

    Google Scholar 

  • Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y et al (2015) A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 56(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Inzitari D, Poggesi A (2005) Calcium channel blockers and stroke. Aging Clin Exp Res 17(4 Suppl):16–30

    PubMed  Google Scholar 

  • Ishii T, Asai T, Dai O, Agato Y, Yasuda N, Fukuta T, Shimizu K, Minamino T et al (2013) Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506. FASEB J 27(4):1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Jiang YH, Emau P, Cairns JS, Flanary L, Morton WR, Mccarthy TD, Tsai CC (2005) SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res Hum Retroviruses 21:207–213

    Article  CAS  PubMed  Google Scholar 

  • Kafa H, Wang JT, Rubio N, Venner K, Anderson G, Pach E et al (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25(1):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi AT, Haida M, Ohba H, Yamano M, Fukumoto D, Tsukada H (2013) Liposome-encapsulated hemoglobin ameliorates ischemic stroke in nonhuman primates: longitudinal observation. Artif Organs 37(10):904–912

    Article  CAS  PubMed  Google Scholar 

  • Kazemzadeh H, Mozafari M (2019) Fullerene-based delivery systems. Drug Discov Today 24(3):898–905

    Article  CAS  PubMed  Google Scholar 

  • Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38(7):1167–1186

    Article  PubMed  Google Scholar 

  • Kikuchi K, Uchikado H, Morioka M, Murai Y, Tanaka E (2012) Clinical neuroprotective drugs for treatment and prevention of stroke. Int J Mol Sci 13(6):7739–7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ID, Lim CM, Kim JB, Nam HY, Nam K, Kim SW, Park JS, Lee JK (2010) Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release 142(3):422–430

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim H, Kim WJ (2016) Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small 12(9):1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Kraft JC, Freeling JP, Wang Z, Ho RJY (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103(1):29–52

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (1994) Nanoparticles. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker, New York, pp 261–276

    Google Scholar 

  • Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  • Lasic DD, Needham D (1995) The “Stealth” liposome: a prototypical biomaterial. Chem Rev 95(8):2601–2628

    Article  CAS  Google Scholar 

  • Leiva-Salinas C, Patrie JT, **n W, Michel P, Jovin T, Wintermark M (2016) Prediction of early arterial recanalization and tissue fate in the selection of patients with the greatest potential to benefit from intravenous tissue-type plasminogen activator. Stroke 47(2):397–403

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T (2018) Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv Mater 30(25):e1706981

    Article  PubMed  Google Scholar 

  • Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Ye X, Wang C, **ng C, Miao Q, **e Z, Chen X, Zhang X, Zhang H, Mei L (2019) Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Control Release 296:150–161

    Article  CAS  PubMed  Google Scholar 

  • Lin CM, Lu TY (2012) C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Pat Nanotechnol 6(2):105–113

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Wang X, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol (Los Angeles) 5(4):213

    Google Scholar 

  • Liu H, Zhang L, Yan M, Yu J (2017a) Carbon nanostructures in biology and medicine. J Mater Chem B 5(32):6437–6450

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X (2017b) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces 9(46):40077–40086

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J (2019a) Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 162:132–146

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Yu JH, Quan Y, Shin YJ, Lee KE, Kim HL et al (2019b) Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Sci Rep 9(1):7995

    Article  PubMed  PubMed Central  Google Scholar 

  • Majidi S, Leon Guerrero CR, Burger KM, Sigounas D, Olan WJ, Qureshi AI (2018) Fixed dose IV rt-PA and clinical outcome in ischemic stroke patients with bodyweight >100 kg: pooled data from 3 randomized clinical trials. J Stroke Cerebrovasc Dis 27(10):2843–2848

    Article  PubMed  Google Scholar 

  • Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M (2020) Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 8(15):4109–4128

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto J, Stewart T, Banks WA, Zhang J (2017) The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 23(40):6206–6214

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y (2018) Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg 5(3):213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Mdzinarishvili A, Sutariya V, Talasilo PK, Geldenhuys WJ, Sadana P (2013) Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv Transl Res 3(4):309–317

    Article  CAS  PubMed  Google Scholar 

  • Meloni BP, Craig AJ, Milech N, Hopkins RM, Watt PM, Knuckey NW (2014) The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cell Mol Neurobiol 34(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Meloni BP, Milani D, Edwards AB, Anderton RS, O’Hare Doig RL, Fitzgerald M, Palmer TN, Knuckey NW (2015) Neuroprotective peptides fused to arginine-rich cell penetrating peptides: neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacol Ther 153:36–54

    Article  CAS  PubMed  Google Scholar 

  • Mendonça MCP, Soares ES, de Jesus MB, Ceragioli HJ, Ferreira MS, Catharino RR, da Cruz-Hofling MA (2015) Reduced graphene oxide induces transient blood–brain barrier opening: an in vivo study. J Nanobiotechnol 13(1):78

    Article  Google Scholar 

  • Mendonca MC, Soares ES, de Jesus MB, Ceragioli HJ, Batista AG, NyulToth A et al (2016) PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm 13(11):3913–3392

    Article  CAS  PubMed  Google Scholar 

  • Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476

    Article  CAS  PubMed  Google Scholar 

  • Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK, Tyagi N (2019) Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int 122:120–138

    Article  CAS  PubMed  Google Scholar 

  • Monti D, Moretti L, Salvioli S, Straface E, Malorni W, Pellicciari R et al (2000) C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 277(3):711–717

    Article  CAS  PubMed  Google Scholar 

  • Mouheiddine TH, Itani MM, Nokkari A, Ren C, Daoud G, Zeidan A, Mondello S, Kobeissy FH (2015) Nanotheragnostic applications for ischemic and hemorrhagic strokes: improved delivery for a better prognosis. Curr Neurol Neurosci Rep 15(1):505

    Article  Google Scholar 

  • Nakano K, Egashira K, Masuda S, Funakoshi K, Zhao G, Kimura S, Matoba T, Sueishi K, Endo Y, Kawashima Y et al (2009) Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC Cardiovasc Interv 2(4):277–283

    Article  PubMed  Google Scholar 

  • Navath RS, Kurtoglu YE, Wang B, Kannan S, Romero R, Kannan R (2008) Dendrimer-drug conjugates for tailored intracellular drug release based on glutathione levels. Bioconjug Chem 19(12):2446–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neetika et al (2023) Cancer treatment and toxicity outlook of nanoparticles. Environ Res 237(1):116870

    Article  CAS  PubMed  Google Scholar 

  • Neves AR, Queiroz JF, Lima SAC, Reis S (2017) Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug Chem 28(4):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Chen J, Gao J (2019) Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci 14(5):480–496

    Article  PubMed  Google Scholar 

  • O’Donnell ME, Yuan JX (2019) Pathophysiology of stroke: what do cells of the neurovascular unit have to do with it? Am J Physiol Cell Physiol 316(1):C1

    Article  PubMed  Google Scholar 

  • Panagiotou S, Saha S (2015) Therapeutic benefits of nanoparticles in stroke. Front Neurosci 9:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Article  Google Scholar 

  • Peng J, Liu Z, Luo C, Chen L, Hou X, **ao L et al (2017) Treatment of cervical artery dissection: antithrombotics, thrombolysis, and endovascular therapy. Biomed Res Int 2017:3072098

    Article  PubMed  PubMed Central  Google Scholar 

  • Poupot R, Bergozza D, Fruchon S (2018) Nanoparticle-based strategies to treat neuro-inflammation. Materials (Basel) 11(2):270

    Article  PubMed  Google Scholar 

  • Powell JR (2015) Are new oral anticoagulant dosing recommendations optimal for all patients? J Am Med Assoc 313(10):1013–1014

    Article  CAS  Google Scholar 

  • Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al.; American Heart Association Stroke Council. (2015) 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46(10):3020–3035

    Google Scholar 

  • Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al.; American Heart Association Stroke Council (2018) 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49(3):e46–e110

    Google Scholar 

  • Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50(12):e344–e418

    Article  PubMed  Google Scholar 

  • Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. J Am Med Assoc 313(14):1451–1462

    Article  CAS  Google Scholar 

  • Pradeep H, Diya JB, Shashikumar S, Rajanikant GK (2012) Oxidative stress—assassin behind the ischemic stroke. Folia Neuropathol 50(3):219–230

    Article  CAS  PubMed  Google Scholar 

  • Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, **ng C, Li Z, Dong B, **ng F, Fan D, Bao S, Zhang H, Cao Y (2018) Novel concept of the smart NIR-light controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci U S A 115(3):501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12(5):698–714

    Article  CAS  PubMed  Google Scholar 

  • Rother J, Ford GA, Thijs VNS (2013) Thrombolytics in acute ischaemic stroke: historical perspective and future opportunities. Cerebrovasc Dis 35:313–319

    Article  PubMed  Google Scholar 

  • Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Xavier M, Leite DM, Moriera DA, Custodio B, Torrado M, Castro R et al (2018) PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. J Control Release 291:65–79

    Article  CAS  PubMed  Google Scholar 

  • Santos B, Martinez-Lara E, Siles E, Peinado MA (2022) New strategies for stroke therapy: nanoencapsulated neuroglobin. Pharmaceutics 14(8):1737

    Article  Google Scholar 

  • Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell C, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF et al (2016) Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. J Am Med Assoc 316(12):1279–1288

    Article  Google Scholar 

  • Seners P, Turc G, MaĂŻer B, Mas JL, Oppenheim C, Baron JC (2016) Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 47(9):2409–2412

    Article  CAS  PubMed  Google Scholar 

  • Shailendra J, Ra**der SM, Mei W, Chaudhuri DB, Ellis JA, Bruce JN, Bigio IJ, Straubinger RM (2014) Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 120(3):489–497

    Article  Google Scholar 

  • Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F (2018) Targeting vascular inflammation in ischemic stroke: recent developments on novel immunomodulatory approaches. Eur J Pharmacol 833:531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shichita T (2018) Molecular and cellular mechanisms underlying the sterile inflammation after ischemic stroke. Nihon Yakurigaku Zasshi 151(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Shindo A, Maki T, Mandeville ET, Liang AC, Egawa N, Itoh K, Itoh N, Borlongan M, Holder JC, Chuang TT, McNeish JD, Tomimoto H, Lok J, Lo EH, Arai K (2016) Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke 47(4):1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802(1):80–91

    Article  CAS  PubMed  Google Scholar 

  • Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Srinageshwar B, Peruzzaro S, Andrews M, Johnson K, Hietpas A, Clark B, Mcguire C, Petersen E, Kippe J, Stewart A, Lossia O et al (2017) PAMAM dendrimers cross the blood–brain barrier when administered through the carotid artery in C57BL/6J mice. Int J Mol Sci 18(3):628

    Article  PubMed  PubMed Central  Google Scholar 

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Pt A):28–51

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, Yu D, Zhang F, Xu L, Chen L, Sun X (2015) Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signaling pathway to alleviate microglial activation. Sci Rep 5:11445

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome encapsulated curcumin. J Agric Food Chem 57(19):9141–9146

    Article  CAS  PubMed  Google Scholar 

  • Takemori K, Murakami T, Kometani T, Ito H (2013) Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res 90:169–172

    Article  CAS  PubMed  Google Scholar 

  • Tan MJ, Pan HC, Tan HR, Chai JW, Lim QF, Wong TI, Zhou X, Hong ZY, Liao LD, Kong KV (2018) Flexible modulation of CO-release using various nuclearity of metal carbonyl clusters on graphene oxide for stroke remediation. Adv Healthc Mater 7(5)

    Google Scholar 

  • Tao HQ, Meng Q, Li MH, Yu H, Liu MF, Du D et al (2013) HP-β-CD-PLGA nanoparticles improve the penetration and bioavailability of puerarin and enhance the therapeutic effects on brain ischemia-reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 386(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI (2019) Neuronanomedicine: an up-to-date overview. Pharmaceutics 11(3):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testa S, Legnani C, Antonucci E, Paoletti O, Dellanoce C, Cosmi B, et al.; Coordinator of START2-Register (2019) Drug levels and bleeding complications in atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost 17(7):1064–1072

    Google Scholar 

  • Thukral P et al (2023) Sustainable green synthesized nanoparticles for neurodegenerative diseases diagnosis and treatment. Mater Today Proc 73(2):323.

    Google Scholar 

  • Tian Y, Su Y, Ye Q, Chen L, Yuan F, Wang Z (2020) Silencing of TXNIP alleviated oxidative stress injury by regulating MAPK-Nrf2 axis in ischemic stroke. Neurochem Res 45(2):428–436

    Article  CAS  PubMed  Google Scholar 

  • Ueno T, Nishijima H, Hikichi H, Haga R, Arai A, Suzuki C, Nunomura JI, Tomiyama M (2018) Association of survival and hyperthermia after rt-PA for ischemic stroke. Acta Neurol Scand 138(6):574–578

    Article  CAS  PubMed  Google Scholar 

  • Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2(3):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Article  PubMed  Google Scholar 

  • Verma G, Rajagopalan MD, Valluru R, Sridhar KA (2017) Chapter 7—Nanoparticles: a novel approach to target tumors. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, pp 113–129

    Google Scholar 

  • Volpe M, Battistoni A, Gallo G, Coluccia R, De Caterina R (2017) Aspirin and the primary prevention of cardiovascular diseases: an approach based on individualized, integrated estimation of risk. High Blood Press Cardiovasc Prev 24(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang Y, Wang Z, Zhao J, Gutkind JS, Srivatsan A, Zhang G, Liao HS, Fu X, ** A, Tong X, Niu G, Chen X (2015) Polymeric nanovehicle regulated spatiotemporal real-time imaging of the differentiation dynamics of transplanted neural stem cells after traumatic brain injury. ACS Nano 9(7):6683–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e Z, Wang D, Fan T, **ng C, Li Z, Tao W, Liu L, Bao S, Fan D, Zhang H (2018) Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J Mater Chem B 6(29):4747–4755

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Sunkaria A, Singhal N, Sandhir R (2018) Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 112:239–254

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Takano Y, Satrialdi Abe J, Hibino M, Harashima H (2020) Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules 10(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Mukda S, Chen SD (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H (2017) TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 310:38–45

    Article  CAS  PubMed  Google Scholar 

  • Yi YY, Shin HJ, Choi SG, Kang JW, Song HJ, Kim SK, Kim DW (2020) Preventive effects of neuroprotective agents in a neonatal rat of photothrombotic stroke model. Int J Mol Sci 21(10):3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XD, Wu HY, Wu D, Wang YY, Chang JH, Zhai ZB et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TT, Li W, Meng G, Wang P, Liao W (2016) Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 4(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, Liu X, Liu Y et al (2016) Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release 233:64–71

    Article  CAS  PubMed  Google Scholar 

  • Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F (2017) Regulation of microglial activation in stroke. Acta Pharmacol Sin 38(4):445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Gao Y, Wan J, Lan X, Han X, Zhu S et al (2018) Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav Immun 69:568–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y (2014) Correlating animal and human phase 1a/1b clinical data with CALAA-01, a targeted polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci 111(31):11449–11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, F., Karan, A., Sharma, N.S., Sundar, V., Jayaraj, R., Abiha, U. (2023). Deciphering the Role of Nanomedicines for the Treatment of Ischemic Stroke. In: Gautam, A., Chaudhary, V. (eds) Theranostic Applications of Nanotechnology in Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-9510-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9510-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9509-7

  • Online ISBN: 978-981-99-9510-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation