Unbounded Operators on the Segal–Bargmann Space

  • Conference paper
  • First Online:
The Bergman Kernel and Related Topics (HSSCV 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 447))

Included in the following conference series:

  • 124 Accesses

Abstract

In this paper we analyse the domains of differential and multiplication operators on the Segal–Bargmann space. We consider the basic estimate for the \(\partial \)- complex, remark that this estimate is closely related to the uncertainty principle in quantum mechanics and compute the Bergman kernel of the graph norm. It is shown that the set of all functions u in the Segal–Bargmann \(A^2(\mathbb C, e^{-|z|^2})\) such that the multiplication with a polynomial p is norm bounded gives a relatively compact subset of the Segal–Bargmann space. In the following section we give a survey of recent results on the \(\partial \)-complex on weighted Bergman spaces on Hermitian manifolds, analysing metrics which produce a similar duality between differentiation and multiplication as in the Segal–Bargmann space. Finally we study the basic estimates and the corresponding questions of compactness for the generalized \(\partial \)-complex.

F. Haslinger—Supported by the FWF-grant P 36884

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aimar, M., Intissar, A., Intissar, J.-K.: On regularized trace formula of Gribov semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann representation. Complex Anal. Oper. Theory 12(3), 615–627 (2018)

    Article  MathSciNet  Google Scholar 

  2. D’Angelo, J.P.: Inequalities from Complex Analysis. The Carus Mathematical Monographs, vol. 28. Mathematical Association of America (2002)

    Google Scholar 

  3. Davies, E.B. : Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Dörfler, M., Feichtinger, H., Gröchenig, K.: Compactness criteria in function spaces. Colloq. Math. 94, 37–50 (2002)

    Article  MathSciNet  Google Scholar 

  5. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton University Press (1989)

    Google Scholar 

  6. Haslinger, F.: The \(\overline{\partial }\)-Neumann Problem and Schrödinger Operators, vol. 59, 2nd edn. de Gruyter Expositions in Mathematics, Walter de Gruyter (2023)

    Google Scholar 

  7. Haslinger, F.: The \(\partial \)-complex on the Segal-Bargmann space. Ann. Polon. Mat. 123, 295–317 (2019)

    MathSciNet  Google Scholar 

  8. Haslinger, F.: The generalized \(\partial \)-complex on the Segal-Bargmann space. Operator Theory, Functional Analysis and Applications. In: Bastos, M.A., Castro, L., Karlovich, A.Y. (eds.) Proceedings of IWOTA 2019, pp. 317–328. Birkhäuser (2021). ar**v:2103.07697

  9. Haslinger, F.: Basic estimates for the generalized \(\partial \)-complex. Pure Appl. Math. Quart. 18(2), 583–597 (2022)

    Article  MathSciNet  Google Scholar 

  10. Haslinger, F., Son, D.N.: The \(\partial \)-complex on weighted Bergman spaces on Hermitian manifolds. J. Math. Anal. Appl. 487, 123994 (2020)

    Article  MathSciNet  Google Scholar 

  11. Haslinger, F., Son, D.N.: The \(\partial \)-operator and real holomorphic vector fields. Pure Appl. Math. Quart. 18(3), 793–833 (2022)

    Article  MathSciNet  Google Scholar 

  12. Intissar, A.: Spectral analysis of non-self-adjoint Jacobi-Gribov operator and asymptotic analysis of its generalized eigenvectors. Adv. Math. (China) 44(3), 335–353 (2015)

    MathSciNet  Google Scholar 

  13. Kohn, J.: Harmonic integrals on strongly pseudoconvex manifolds, I. Ann. Math. 78, 112–148 (1963)

    Article  MathSciNet  Google Scholar 

  14. Kohn, J.: Harmonic integrals on strongly pseudoconvex manifolds, II. Ann. Math. 79, 450–472 (1964)

    Article  MathSciNet  Google Scholar 

  15. Munteanu, O., Wang, O.: Kähler manifolds with real holomorphic vector fields. J. Math. Ann. 363, 893–911 (2015)

    Article  Google Scholar 

  16. Newman, D.J., Shapiro, H.S.: Certain Hilbert spaces of entire functions. Bull. Amer. Math. Soc. 72, 971–977 (1966)

    Article  MathSciNet  Google Scholar 

  17. Newman, D.J., Shapiro, H.S.: Fischer spaces of entire functions, in Entire Functions and related parts of analysis. In: Proceedings of Symposia in Pure Mathematics, La Jolla, 1966, pp. 360–369. American Mathematical Society, Providence (1968)

    Google Scholar 

  18. Pasternak-Winiarski, Z.: On the dependence of the reproducing kernel on the weight of integration. J. Funct. Anal. 94, 110–134 (1990)

    Article  MathSciNet  Google Scholar 

  19. Quillen, D.G.: On the representation of Hermitian forms as sums of squares. Invent. Math. 5, 237–242 (1968)

    Article  MathSciNet  Google Scholar 

  20. Treves, F.: Linear Partial Differential Equations with Constant Coefficients. Gordon and Breach, New York (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Haslinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haslinger, F. (2024). Unbounded Operators on the Segal–Bargmann Space. In: Hirachi, K., Ohsawa, T., Takayama, S., Kamimoto, J. (eds) The Bergman Kernel and Related Topics. HSSCV 2022. Springer Proceedings in Mathematics & Statistics, vol 447. Springer, Singapore. https://doi.org/10.1007/978-981-99-9506-6_6

Download citation

Publish with us

Policies and ethics

Navigation