Metabolites of Chemical Signaling Pathways from Crop–Microbe Interactions

  • Chapter
  • First Online:
Plant Holobiome Engineering for Climate-Smart Agriculture

Abstract

Crop–microbe interactions play an important role in plant growth, development, and health. These interactions are mediated by chemical signals, which are produced and perceived by both the plant and the microbe. Chemical signaling pathways in crop–microbe interactions involve a range of metabolites, including phytohormones, secondary metabolites, and volatile organic compounds (VOCs). These metabolites can impact plant growth, stress response, and defense mechanisms. There is an increasing interest in understanding the chemical signaling pathways involved in crop–microbe interaction and the metabolites that mediate these pathways to develop new strategies for improving crop productivity and sustainability by harnessing the potential of these metabolites. This chapter highlights the importance of different chemical signaling pathways and metabolites involved in crop–microbe interactions for sustainable agriculture and for the development of novel bio-based products for crop protection and increasing yield and also emphasizes the need for research in this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 291.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, Mühling KH (2019) Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: a review of their structural diversity and medicinal importance. J Appl Bot Food Qual 92:204–215

    CAS  Google Scholar 

  • Amara U, Khalid R, Hayat R (2015) Soil bacteria and phytohormones for sustainable crop production. In: Bacterial metabolites in sustainable agroecosystem, pp 87–103

    Chapter  Google Scholar 

  • Bag S, Mondal A, Majumder A, Mondal SK, Banik A (2022) Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. Phytochem Rev 21(5):1739–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52(360):1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y (2017) Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 10(8):729–743

    Article  CAS  PubMed  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    Article  CAS  Google Scholar 

  • Chagas FO, de Cassia PR, Caraballo-Rodriguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47(5):1652–1704

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. Springer

    Book  Google Scholar 

  • De Salamone IG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: PGPR: biocontrol and biofertilization, pp 173–195

    Chapter  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L (2021) Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants 7(3):256–267

    Article  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change, pp 395–412

    Chapter  Google Scholar 

  • Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A (2022) Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants 11(9):1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D (2022) Linking soil microbial diversity to modern agriculture practices: a review. Int J Environ Res Public Health 19(5):3141

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Mohamed HI (2022) Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: a review. Gesunde Pflanzen 74:771–790

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Karabín M, Hudcová T, Jelínek L, Dostálek P (2016) Biologically active compounds from hops and prospects for their use. Compr Rev Food Sci Food Saf 15(3):542–567

    Article  PubMed  Google Scholar 

  • Karimian MA, Fazeli-Nasab BA, Sayyed R, Ilyas N, Almalki WH, Vats S, Munir S, Said H, Rahi AA (2023) Salicylic acid foliar spray promotes yield, yield components, and physiological characteristics in foxtail millet under drought stress. Pak J Bot 55:11. https://doi.org/10.30848/PJB2023-SI(11)

    Article  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N (2021) Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiol Plant 172(2):696–706

    Article  CAS  PubMed  Google Scholar 

  • Koche D (2014) Role of secondary metabolites in plants’ defense mechanism. In: Makde KH (ed) A glimpse of current vistas plant science research. Hislop College Publication Cell, Nagpur, pp 1–16

    Google Scholar 

  • Kumar A, Verma JP (2018) Does plant–microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kusale SP, Attar YC, Sayyed R, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA (2021) Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26(7):1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8(10):1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM (2017) A non-targeted metabolomics approach unravels the VOCs associated with the tomato immune response against Pseudomonas syringae. Front Plant Sci 8:1188

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Ráez JA, Pozo MJ (2013) Chemical signalling in the arbuscular mycorrhizal symbiosis: biotechnological applications. In: Symbiotic endophytes, pp 215–232

    Chapter  Google Scholar 

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Bacterial metabolites in sustainable agroecosystem, pp 159–182

    Chapter  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant–microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Métrauxs J-P (2001) Systemic acquired resistance and salicylic acid: current state of knowledge. Eur J Plant Pathol 107:13–18

    Article  Google Scholar 

  • More S, Shinde S, Kasture M (2020) Root exudates a key factor for soil and plant: an overview. Pharm Innov J 8:449–459

    Google Scholar 

  • Morel M, Cagide C, Minteguiaga M, Dardanelli MS, Castro-Sowinski S (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant Microbe Interact 28(2):134–142

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GE, Poole PS (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narula N, Kothe E, Behl RK (2012) Role of root exudates in plant–microbe interactions. J Appl Bot Food Qual 82(2):122–130

    Google Scholar 

  • Naz R, Khushhal S, Asif T, Mubeen S, Saranraj P, Sayyed R (2022) Inhibition of bacterial and fungal phytopathogens through volatile organic compounds produced by Pseudomonas sp. In: Secondary metabolites and volatiles of PGPR in plant-growth promotion. Springer, pp 95–118

    Chapter  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337

    Google Scholar 

  • Paiva NL (2000) An introduction to the biosynthesis of chemicals used in plant–microbe communication. J Plant Growth Regul 19:131–143

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Sayyed RZ, Saraf M (2016) Bacterial determinants and plant defense induction: their role as biocontrol agents in sustainable agriculture. In: Plant, soil and microbes: mechanisms and molecular interactions, vol 2, pp 187–204

    Chapter  Google Scholar 

  • Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ (2018) Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol Plant 11(12):1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Rabari A, Ruparelia J, Jha CK, Sayyed R, Mitra D, Priyadarshini A, Senapati A, Panneerselvam P, Mohapatra PKD (2022) Articulating beneficial rhizobacteria mediated plant defenses through induced systemic resistance. Pedosphere 33(4):556–566

    Article  Google Scholar 

  • Rafique N, Ilyas N, Aqeel M, Raja NI, Shabbir G, Ajaib M, Sayyed R, Alharbi SA, Ansari MJ (2023) Interactive effects of melatonin and salicylic acid on Brassica napus under drought condition. In: Plant and soil, pp 1–20

    Google Scholar 

  • Rehman F, Khan F, Badruddin S (2012) Role of phenolics in plant defense against insect herbivory. In: Chemistry of phytopotentials: health, energy and environmental perspectives, pp 309–313

    Chapter  Google Scholar 

  • Reshma P, Naik M, Aiyaz M, Niranjana S, Chennappa G, Shaikh S, Sayyed R (2018) Induced systemic resistance by 2,4-diacetylphloroglucinol positive fluorescent pseudomonas strains against rice sheath blight. NISCAIR-CSIR

    Google Scholar 

  • Riaz U, Kharal MA, Murtaza G, uz Zaman Q, Javaid S, Malik HA, Aziz H, Abbas Z (2019) Prospective roles and mechanisms of caffeic acid in counter plant stress: a mini review. Pak J Agric Res 32(1):8

    Google Scholar 

  • Sagar A, Sayyed R, Ramteke P, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26:1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5(5):301–307

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, Santos-Villalobos SD, Orozco-Mosqueda MD, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11(2):219

    Article  CAS  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3(3):430–439

    Article  PubMed  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12(5):1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütz V, Frindte K, Cui J, Zhang P, Hacquard S, Schulze-Lefert P, Knief C, Schulz M, Dörmann P (2021) Differential impact of plant secondary metabolites on the soil microbiota. Front Microbiol 12:666010

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbaz M, Akram A, Mehak A, Haq E, Fatima N, Wareen G, Fitriatin BN, Sayyed R, Ilyas N, Sabullah MK (2023) Evaluation of selenium nanoparticles in inducing disease resistance against spot blotch disease and promoting growth in wheat under biotic stress. Plants Theory 12(4):761

    Article  CAS  Google Scholar 

  • Singh AK, Kumar S, Sinha T (2021) Antioxidants in plant–microbe interaction. Springer

    Book  Google Scholar 

  • Smulders L (2022) Interactions of soil microbiome, plant defenses and domestication in tomato. Universidad de Granada

    Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    Article  CAS  PubMed  Google Scholar 

  • Tanveer S, Akhtar N, Ilyas N, Sayyed R, Fitriatin BN, Perveen K, Bukhari NA (2023) Interactive effects of Pseudomonas putida and salicylic acid for mitigating drought tolerance in canola (Brassica napus L.). Heliyon 9(3):e14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiruvengadam M, Baskar V, Kim S-H, Chung I-M (2016) Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa). Plant Growth Regul 80:377–390

    Article  CAS  Google Scholar 

  • Tiku AR (2018) Antimicrobial compounds and their role in plant defense. In: Molecular aspects of plant–pathogen interaction, pp 283–307

    Chapter  Google Scholar 

  • Uarrota VG, Sayyed R, Pedreschi R (2022) The role of PGPR-secondary metabolites on plant photosynthesis. In: Secondary metabolites and volatiles of PGPR in plant-growth promotion. Springer, pp 45–57

    Chapter  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tu X, Huang AC (2022) Functions and biosynthesis of plant signaling metabolites mediating plant–microbe interactions. Nat Prod Rep 39(7):1393–1422

    Article  CAS  PubMed  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zehra A, Raytekar NA, Meena M, Swapnil P (2021) Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: a review. Curr Res Microb Sci 2:100054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zeng L, Chen Y, Wang X, Liao Y, **ao Y, Fu X, Yang Z (2020) Metabolism of gallic acid and its distributions in tea (Camellia sinensis) plants at the tissue and subcellular levels. Int J Mol Sci 21(16):5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqa, A., Qureshi, R., Ilyas, N., Hussain, C.S., Ali, M. (2024). Metabolites of Chemical Signaling Pathways from Crop–Microbe Interactions. In: Sayyed, R.Z., Ilyas, N. (eds) Plant Holobiome Engineering for Climate-Smart Agriculture. Sustainable Plant Nutrition in a Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-99-9388-8_24

Download citation

Publish with us

Policies and ethics

Navigation