Navigating the Path from Lab to Market: Regulatory Challenges and Opportunities for Genome Editing Technologies for Agriculture

  • Chapter
  • First Online:
Plant Genome Editing Technologies

Abstract

Over recent decades, an array of molecular tools has been applied in plant genome engineering, including TALENs (transcription activator-like effector nucleases), ZFNs (zinc-finger nucleases), and CRISPR/Cas systems (clustered regularly interspaced short palindromic repeats). At present, CRISPR/Cas systems have caught significant industry attention owing to their cost-effectiveness and precision in genomic modulation, thereby serving as a potent tool in plant science research. Importantly, plants subjected to genome editing via CRISPR/Cas systems might not be classified as genetically modified organisms (GMO), which could streamline their acceptance worldwide. Originally discovered as a defense mechanism against plasmids and invading viruses in bacteria and archaea, the CRISPR/Cas system includes two components: the CRISPR ribonucleic acid (crRNA) and the Cas protein. The crRNA guides the Cas protein to a specific (DNA) target sequence. Once there, the protein cleaves the sequence, thereby impeding replication. In relation to plant genome editing, researchers have modified the crRNA to target distinct genome sequences, and the Cas protein has been manipulated to function as either an endonuclease or a base editor. The most frequently used enzymes from the Type II CRISPR/Cas system are CRISPR/Cas9 and CRISPR/Cas12a (Cpf1). CRISPR/Cas systems and other genome editing tools harbor immense potential to revolutionize plant breeding and biotechnology. Nevertheless, their use must undergo stringent regulation to ensure safe and responsible application. The future holds promise for plant genome editing, with safety being a paramount concern for crop gene editing. As such, it is vital to perpetuate research and development in this field to fully exploit its potential advantages for plant science and agriculture because, as this technology advances and new tools emerge, it becomes crucial for governments to keep abreast of cutting-edge scientific progress. This awareness allows for a balance between gene editing benefits and the associated safety and ethical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Aziz M, Brini F, Rouached H, Masmoudi K (2022) Genetically engineered crops for sustainably enhanced food production systems. Front Plant Sci 13:1027828

    Article  PubMed  PubMed Central  Google Scholar 

  • Academy of Science of South Africa (2016) a: the regulatory implications of new breeding techniques

    Google Scholar 

  • Ahmad M (2023) Plant breeding advancements with "CRISPR/Cas" genome editing technologies will assist future food security. Front Plant Sci 14:1133036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS et al (2021) An outlook on global regulatory landscape for genome-edited crops. Int J Mol Sci 22:11753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL (2023) CRISPR/Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 46(4):483–497

    Article  CAS  PubMed  Google Scholar 

  • Anderson JE, Michno JM, Kono TJ, Stec AO, Campbell BW, Curtin SJ, Stupar RM (2016) Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnol 16(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Anon (2018) Reject the “Gmo” fallacy, in terms of both safety concerns and socioeconomic issues. Geogr Rev 108(1):e1–e5

    Article  Google Scholar 

  • Anon (2019) Africa Biennial Biosciences Communication Symposium, 2019

    Google Scholar 

  • Anon (2020) Biotechnology do: draft document on genome edited organisms: regulatory framework and guidelines for risk assessment

    Google Scholar 

  • Anon (2022) Japan embraces CRISPR-edited fish. Nat Biotechnol 40(1):10–10

    Article  Google Scholar 

  • Anon (2023) Global gene editing regulation tracker and index

    Google Scholar 

  • Anon (n.d.-a) This report contains assessments of commodity and trade issues made by usda staff and not necessarily statements of official u.

    Google Scholar 

  • Anon (n.d.-b) Fact sheet: questions and answers on EU's policies on GMOs. https://ec.europa.eu/commission/presscorner/detail/en/MEMO_15_4778

  • Apps.Fas.Usda.Gov (n.d.) Agricultural Biotechnology Annual. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Agricultural%20Biotechnology%20Annual_Buenos%20Aires_Argentina_2-15-2019.pdf

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20(3):145–149

    Article  CAS  PubMed  Google Scholar 

  • Aven T (2016) Risk assessment and risk management: Review of recent advances on their foundation. Eur J Oper Res 253:1–13

    Article  Google Scholar 

  • Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJL, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:22–35

    Google Scholar 

  • Beghin JC, Gustafson CR (2021) Consumer valuation of and attitudes towards novel foods Produced with new plant engineering techniques: a review. Sustainability 13(20):11348

    Article  CAS  Google Scholar 

  • Benítez Candia N, Fernández Ríos D, Vicién C (2020) Paraguay’s path toward the simplification of procedures in the approval of GE crops. Front Bioeng Biotechnol 8:1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatta BP, Malla S (2020) Improving horticultural crops via CRISPR/Cas9: current successes and prospects. Plants (Basel, Switzerland) 9(10):1360

    CAS  PubMed  Google Scholar 

  • Bratlie S, Halvorsen K, Myskja BK, Mellegård H, Bjorvatn C, Frost P, Heiene G, Hofmann B, Holst-Jensen A, Holst-Larsen T et al (2019) A novel governance framework for GMO. EMBO Rep 20(5):1

    Article  Google Scholar 

  • Brookes G (2022) Genetically modified (GM) crop use 1996–2020: environmental impacts associated with pesticide use CHANGE. GM Crop Food 13(1):262–289

    Article  Google Scholar 

  • Brown J, Caligari PDS, Campos HA (2014) Plant breeding. Wiley Blackwell, Hoboken, NJ

    Google Scholar 

  • Buchholzer M, Frommer WB (2023) An increasing number of countries regulate genome editing in crops. New Phytologist 237:12–15

    Article  PubMed  Google Scholar 

  • Bullock DW, Wilson WW, Neadeau JF (2019) Genetic editing (GE) versus genetic modification (GM) in the research and development of new crop varieties: an economic comparison

    Google Scholar 

  • Canadian Food Inspection Agency C (n.d.) Decision documents—determination of environmental and livestock feed safety Canadian Food Inspection Agency

    Google Scholar 

  • Cibus (n.d.) Cibus Announces Approval of First Commercial Product SU Canola™ in Canada. https://www.cibus.com/press-release.php?date=031814

    Google Scholar 

  • Collins JP (2018) Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management. BMC Proc 12(Suppl 8):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa HB, Letícia M, Vieira R, Volpi N, Guilherme S, Prado S, Hernandes J, Filho L (n.d.) CRISPR technology in plant genome editing biotechnology applied to agriculture technical editors

    Google Scholar 

  • Crispr-Gene (n.d.) Crispr gene editing regs tracker. https://crispr-gene-editing-regs-tracker.geneticliteracyproject.org/united-states-crops-food/

  • Cummings C, Peters DJ (2022) Who trusts in gene-edited foods? Analysis of a representative survey study predicting willingness to eat-and purposeful avoidance of gene edited foods in the United States. Front Food Sci Technol 2:1

    Article  Google Scholar 

  • Davison J (2010) GM plants: science, politics and EC regulations. Plant Sci 178:94–98

    Article  CAS  Google Scholar 

  • Dederer HG, Hamburger D (2019) Regulation of genome editing in plant biotechnology: a comparative analysis of regulatory frameworks of selected countries and the EU. Springer International Publishing, Cham

    Book  Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J et al (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16(1):225

    Article  PubMed  PubMed Central  Google Scholar 

  • Dima O, Heyvaert Y, Inzé D (2022) Interactive database of genome editing applications in crops and future policy making in the European Union. Trends Plant Sci 27(8):746–748

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR/Cas9. Science (New York, NY) 346(6213):1258096

    Article  Google Scholar 

  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019) Plants developed by new genetic modification techniques-comparison of existing regulatory frameworks in the EU and Non-EU countries. Front Bioeng Biotechnol 7:1

    Article  Google Scholar 

  • Entine J, Felipe MSS, Groenewald JH, Kershen DL, Lema M, McHughen A, Nepomuceno AL, Ohsawa R, Ordonio RL, Parrott WA et al (2021) Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res 30(4):551–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Smyth S, Wesseler J, Whelan A (2019) A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. In: New phytologist, vol 222. Blackwell Publishing Ltd, Oxford, pp 1673–1684

    Google Scholar 

  • Eş I, Gavahian M, Marti-Quijal FJ, Lorenzo JM, Mousavi Khaneghah A, Tsatsanis C, Kampranis SC, Barba FJ (2019) The application of the CRISPR/Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Biotechnol Adv 37(3):410–421

    Article  PubMed  Google Scholar 

  • Europa.eu (n.d.) Genome-edited crops and 21st centrury food system challenges. https://www.europarl.europa.eu/thinktank/en/document/%20EPRS_IDA(2022)690194

  • European C, Joint Research C, Parisi C, Rodríguez-Cerezo E (2021) Current and future market applications of new genomic techniques. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Eu-Sage.eu (n.d.) European sustainable agriculture through genome editing. https://www.eu-sage.eu

  • Executive Office of the USPEO (2019) Modernizing the regulatory framework for agricultural biotechnology products

    Google Scholar 

  • Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C (2019) An overview of regulatory approaches to genome editing in agriculture. Biotechnol Res Innov 3(2):208–220

    Article  Google Scholar 

  • Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8(12):a023754

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatica-Arias A (2020) The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. In: Plant cell, tissue and organ culture, vol 141. Springer, Cham, pp 229–242

    Google Scholar 

  • Gleim S, Lubieniechi S, Smyth SJ (2020) CRISPR/Cas9 Application in Canadian Public and private plant breeding. CRISPR J 3:44–51

    Article  PubMed  Google Scholar 

  • Globus R, Qimron U (2018) A technological and regulatory outlook on CRISPR crop editing. J Cell Biochem 119(2):1291–1298

    Article  CAS  PubMed  Google Scholar 

  • GM Waxy Maize (n.d.) The gene edited Trojan Horse is moving through the gates. https://grain.org/en/article/6640-gm-waxy-maize-the-gene-edited-trojan-horse-is-moving-through-the-gates

  • Gonzalez-Avila LU, Vega-López JM, Pelcastre-Rodríguez LI, Cabrero-Martínez OA, Hernández-Cortez C, Castro-Escarpulli G (2021) The challenge of CRISPR/Cas toward bioethics. Front Microbiol 12:657981

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kumar A, Patel R, Kumar V (2021) Genetically modified crop regulations: scope and opportunity using the CRISPR/Cas9 genome editing approach. Mol Biol Rep 48(5):4851–4863

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Sharma G, Saraswat P, Ranjan R (2021) Synthetic biology in plants, a boon for coming decades. Mol Biotechnol 63(12):1138–1154

    Article  CAS  PubMed  Google Scholar 

  • Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P et al (2022) Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: a narrative review of literature and future perspectives. Front Nutr 9:972154

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman NE (2021) Revisions to USDA biotechnology regulations: the SECURE rule. Proc Natl Acad Sci U S A 118(22):e2004841118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdren JP, Shelanski H, Vetter D, Goldfuss C (2015) Memorandum for heads of food and drug administration, environmental protection agency, and department of agriculture from: Chief agricultural negotiator United States trade representative subject: modernizing the regulatory system for biotechnology products

    Google Scholar 

  • Hua K, Zhang J, Botella JR, Ma C, Kong F, Liu B, Zhu JK (2019) Perspectives on the application of genome-editing Technologies in Crop Breeding. Mol Plant 12(8):1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Huesing JE, Andres D, Braverman MP, Burns A, Felsot AS, Harrigan GG, Hellmich RL, Reynolds A, Shelton AM, Van Rijssen WJ et al (2016) Global adoption of genetically modified (GM) crops: challenges for the public sector. J Agric Food Chem 64:394–402

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2019) Global status of CommerCialized bioteCh/Gm CropS in 2019:biotech Crops drive Socio-economic development and Sustainable environment in the new frontier, vol 55. ISAAA Brief, Ithaca, NY

    Google Scholar 

  • **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337(6096):816–821

    Article  CAS  Google Scholar 

  • Jorasch P (2020) Potential, challenges, and threats for the application of new breeding techniques by the private plant breeding sector in the EU. Front Plant Sci 11:582011

    Article  PubMed  PubMed Central  Google Scholar 

  • Julkaisut (n.d.) Utilisation of New Genome Editing Techniques in Finland. https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/163143/VNTEAS_2021_39.pdf?%20sequence=1

  • Kanchiswamy CN, Malnoy M, Velasco R, Kim JS, Viola R (2015) Non-GMO genetically edited crop plants. In: Trends in biotechnology, vol 33. Elsevier, Amsterdam, pp 489–491

    Google Scholar 

  • Kato-Nitta N, Inagaki Y, Maeda T, Tachikawa M (2021) Effects of information on consumer attitudes towards gene-edited foods: a comparison between livestock and vegetables. CABI Agric Biosci 2(1):14

    Article  Google Scholar 

  • Laaninen T (2021) New genomic techniques. European Commission study and first reactions. https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698760/EPRS_BRI(2021)698760_EN.pdf

  • Lassoued R, Macall DM, Hesseln H, Phillips PWB, Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28(2):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassoued R, Phillips PWB, Smyth SJ, Hesseln H (2019) Estimating the cost of regulating genome edited crops: expert judgment and overconfidence. GM Crops Food 10(1):44–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusser M, Davies HV (2013) Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol 30:437–446

    Article  CAS  Google Scholar 

  • Lusser M, Parisi C, Rodriguez Cerezo E, Plan D (2011) New plant breeding techniques. State-of-the-art and prospects for commercial development. EUR 24760 EN. Luxembourg (Luxembourg): Publications Office of the European Union. JRC63971

    Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang R, Lemaux PG (2020) Genetic engineering and editing of plants: an analysis of new and persisting questions. Annu Rev Plant Biol 71:659

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie R, Burhenne-Guilmin F, La Viña AGM, Werksman JD, Ascencio A, Kinderlerer J, Kummer K, Tapper R (2003) An explanatory guide to the Cartagena protocol on biosafety. IUCN Environmental Law Centre, Bonn, p 46

    Book  Google Scholar 

  • Mackenzie R, Burhenne-Guilmin F, La Viña AGM, Werksman JD, Ascencio A, Kinderlerer J, Kummer K, Tapper R (n.d.) The world conservation union the world conservation union IUCN environmental law Centre

    Google Scholar 

  • Marette S, Disdier A-C, Beghin JC (2021) A comparison of EU and US consumers’ willingness to pay for gene-edited food: evidence from apples. Appetite 159:105064

    Article  PubMed  Google Scholar 

  • Martin-Laffon J, Kuntz M, Ricroch AE (2019) Worldwide CRISPR patent landscape shows strong geographical biases. Nat Biotechnol 37(6):613–620

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M, Tachikawa M (2022) Implications and lessons from the introduction of genome-edited food products in Japan. Front Genome Ed 4:899154

    Article  PubMed  PubMed Central  Google Scholar 

  • McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Crop Life International, Brussels

    Google Scholar 

  • McHughen A (2016) A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crop Food 7:125–158

    Article  Google Scholar 

  • Medvedieva MO, Blume YB (2018) Legal regulation of plant genome editing with the CRISPR/Cas9 technology as an example. Cytol Genet 52(3):204–212

    Article  Google Scholar 

  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T (2020) Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci 11:586027

    Article  PubMed  PubMed Central  Google Scholar 

  • Metje-Sprink J, Sprink T, Hartung F (2020) Genome-edited plants in the field. Curr Opin Biotechnol 61:1–6

    Article  CAS  PubMed  Google Scholar 

  • Neve P (2018) Gene drive systems: do they have a place in agricultural weed management? Pest Manag Sci 74(12):2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7(1):7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Objective 2030 (n.d.) Deregulate most GMOs in Europe? https://www.infogm.org/7512-objective-2030-deregulate-most-gmos-in-europe?lang=fr#nb2-3

  • Oliver MJ (2014) Why we need GMO crops in agriculture. Mo Med 111(6):492–507

    PubMed  PubMed Central  Google Scholar 

  • Ostp US (1986) Coordinated framework for regulation of biotechnology. Office of Science and Technology Policy, Washington, DC

    Google Scholar 

  • Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F et al (2018) Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific map** population of soybean using high-density linkage map**. Plant Biotechnol J 16(11):1939–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375

    Article  CAS  PubMed  Google Scholar 

  • Produtos Avaliados (n.d.) Técnicas Inovadoras de Melhoramento de Precisão. http://ctnbio.mctic.gov.br/documents/566529/2304555/Tabela+TIMP/8c4a7218-f810-405b-94bf-a352d849f3dc?version=1.1

  • Ramessar K, Capell T, Twyman RM, Christou P (2008) Trace and traceability—a call for regulatory harmony. Nat Biotechnol 25:975–978

    Article  Google Scholar 

  • Rao Y, Yang X, Pan C, Wang C, Wang K (2022) Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement. Front Plant Sci 13:839001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M (2023) Tailoring crops with superior product quality through genome editing: an update. Planta 257(5):86

    Article  CAS  PubMed  Google Scholar 

  • Realagriculture (n.d.) Canada moves forward on giving gene-editing the conventional plant breeding stamp of approval. https://www.realagriculture.com/2023/05/canada-moves-forward-on-giving-gene-editing-the-conventional-plant-breeding-stamp-of-approval/

  • Reuters.Com (n.d.) In-vitro plant gene editing technique excluded from GMO rules, EU court says. https://www.reuters.com/world/europe/in-vitro-plant-gene-editing-technique-excluded-gmo-rules-eu-court-says-2023-02-07/

  • Rozas P, Kessi-Pérez EI, Martínez C (2022) Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol Res 55:1

    Article  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  PubMed  Google Scholar 

  • Schmidt SM, Belisle M, Frommer WB (2020) The evolving landscape around genome editing in agriculture. EMBO Rep 21(6):e50680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P (2015) A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 24(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Shah T, Andleeb T, Lateef S, Noor MA (2018) Genome editing in plants: advancing crop transformation and overview of tools. Plant Physiol Biochem 131:12–21

    Article  CAS  PubMed  Google Scholar 

  • Smyth SJ (2019) Regulation of genome editing in plant biotechnology: Canada. In: Dederer H-G, Hamburger D (eds) Regulation of genome editing in plant biotechnology: a comparative analysis of regulatory frameworks of selected countries and the EU. Springer International Publishing, Cham, pp 111–135

    Chapter  Google Scholar 

  • Smyth SJ (2022) Contributions of genome editing technologies towards improved nutrition, environmental sustainability and poverty reduction. Front Genome Ed 4:4

    Article  Google Scholar 

  • Smyth SJ, Gleim S, Lubieniechi S (2020) Regulatory barriers to innovative plant breeding in Canada. Front Genome Ed:2, 591592

    Google Scholar 

  • Smyth S, McHughen A (2008) Regulating innovative crop technologies in Canada: the case of regulating genetically modified crops. Plant Biotechnol J 6:213–225

    Article  PubMed  Google Scholar 

  • Smyth SJ, Phillips PWB (2014) Risk, regulation and biotechnology: the case of GM crops. GM Crop Food 5(3):170–177

    Article  Google Scholar 

  • Smyth SJ, Wesseler J (2022) The future of genome editing innovations in the EU. Trends Biotechnol 40(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  • Spök A, Sprink T, Allan AC, Yamaguchi T, Dayé C (2022) Towards social acceptability of genome-edited plants in industrialised countries? Emerging evidence from Europe, United States, Canada, Australia, New Zealand, and Japan. Front Genome Ed 4:899331

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprink T, Wilhelm R, Hartung F (2022) Genome editing around the globe: an update on policies and perceptions. Plant Physiol 190(3):1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner HY, Halpin C, Jez JM, Kough J, Parrott W, Underhill L, Weber N, Hannah LC (2013) Editor's choice: evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiol 161(4):1587–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabue G (2017) Product, not process! Explaining a basic concept in agricultural biotechnologies and food safety. Life Sci Soc Policy 13(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Teferra TF (2021) Should we still worry about the safety of GMO foods? Why and why not? A review. Food Sci Nutr 9(9):5324–5331

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi L, Dhugga KS, Ntui VO, Runo S, Syombua ED, Muiruri S, Wen Z, Tripathi JN (2022) Genome Editing for Sustainable Agriculture in Africa. Front Genome Ed 4:4

    Article  Google Scholar 

  • Turnbull C, Lillemo M, Hvoslef-Eide TAK (2021) Global regulation of genetically modified crops amid the gene edited crop boom—a review. Front Plant Sci 12:630396

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin A, Gallardo RK, Rickard B, Alston J, Sambucci O (2022) Consumer acceptance of new plant-breeding technologies: an application to the use of gene editing in fresh table grapes. PLoS One 17(12):e0270792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Us O (1986) Coordinated framework for regulation of biotechnology. office of Science and Technology Policy, Washington, DC

    Google Scholar 

  • Us O (2017) Update to the coordinated framework for the regulation of biotechnology

    Google Scholar 

  • Vieira LR, Freitas NC, Justen F, Miranda VDJ, Garcia BDO, Nepomuceno AL, Fuganti-Pagliarini R, Felipe MSS, Molinari HBC, Velini ED (2021) Regulatory framework of genome editing in Brazil and worldwide

    Google Scholar 

  • Waltz E (2022) GABA-enriched tomato is first CRISPR-edited food to enter market. Nat Biotechnol 40(1):9–11

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G et al (2022) CRISPR/Cas genome editing Technologies for Plant Improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. Cell 11(23)

    Google Scholar 

  • Wasmer M (2019) Roads forward for European GMO policy-uncertainties in wake of ECJ judgment have to be mitigated by regulatory reform. Front Bioeng Biotechnol 7:7

    Article  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  CAS  PubMed  Google Scholar 

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 14(2):510–518

    Article  CAS  PubMed  Google Scholar 

  • Woźniak-Gientka E, Tyczewska A, Twardowski T (2022) Public opinion on biotechnology and genetic engineering in the European Union: polish consumer study. Biotechnologia 103(2):185–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hussain A, Manghwar H, **e K, **e S, Zhao S, Larkin RM, Qing P, ** S, Ding F (2020) Genome editing with the CRISPR/Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 18(8):1651–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Lai L, Ji W, Zhou Q (2019) Genome editing in large animals: current status and future prospects. Natl Sci Rev 6(3):402–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Bruno Correa Molinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molinari, M.D.C. et al. (2024). Navigating the Path from Lab to Market: Regulatory Challenges and Opportunities for Genome Editing Technologies for Agriculture. In: Chen, JT., Ahmar, S. (eds) Plant Genome Editing Technologies. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-9338-3_2

Download citation

Publish with us

Policies and ethics

Navigation