Quantized Interhemispheric Energy Transfer: Learning Motorized Tasks

  • Chapter
  • First Online:
Emotion, Cognition and Silent Communication: Unsolved Mysteries

Part of the book series: Studies in Rhythm Engineering ((SRE))

  • 134 Accesses

Abstract

All human subjects are not equal: don’t ask them same question. In our day-to-day lives, we encounter people who learn very fast, and some learn very slowly. We think that all people learn at different times. If we take statistical data for learning time and a large population, we would find that the time increases linearly from a very fast learner to a very slow learner. However, our result shows this is not a line, but staircase-like jumps are observed. Each stair signifies an upper and a lower time limit. Human subjects who fall in this flat region learn similarly. Calibrating the parameters estimating psychological attributes is debated extensively in psychology. Subjective variations, latent attributes could assign irrelevant data significant. One such problem is the taxonomy of functional lateralization. By comparing the mirror drawing (MD) task with the meta-analysis of brain signals, we demonstrate that lateralization of two hemispheres follows allowed and restricted time gaps. Discrete time-gaps in the energy transfer led to six temporal classifications of learning efficiencies of human subjects. Correlated meta-analysis studies support the finding. Interhemispheric energy transfer in EEG conducted on twenty subjects showed that subjects whose first attempt to complete an MD task fall in a specific time domain, their learning efficiencies change similarly during procedural learning. Six-time domains were confirmed via multiple cross-verification experiments, governing a latent attribute to subjective variances. Our quantized correction to classical psychometric theory would efficiently calibrate the parameters estimating psychological attributes by classifying subjects into at least six categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal L et al (2016) Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell. J Integrative Neurosci 15(4):435–462

    Google Scholar 

  2. Agrawal L, Chhajed R, Ghosh S, Ghosh B, Ray K, Sahu S, Fujita D (2018) Fractal information theory (FIT)-derived geometric musical language (GML) for brain-inspired hypercomputing. Soft Comput Theories Appl 548:343–372

    Article  Google Scholar 

  3. Adi-Japha E, Karni A, Parnes A, Loewenschuss I, Vakil E (2008) A shift in task routines during the learning of a motor skill: group-averaged data may mask critical phases in the individuals’ acquisition of skilled performance. J Exp Psychol Learn Memory Cogn 34(6):1544–1551. https://doi.org/10.1037/a0013217

  4. Aarts A, Anderson J, Anderson C, Attridge P, Attwood A, Axt J, Zuni K et al (2015) Estimating the reproducibility of psychological science. Science 349(6251). https://doi.org/10.1126/science.aac4716

  5. Allman M, Teki S, Griffiths T, Meck W (2014) Properties of the internal clock: first- and second-order principles of subjective time. Annu Rev Psychol 65(1):743–771. https://doi.org/10.1146/annurev-psych-010213-115117

    Article  Google Scholar 

  6. Aoki K, Giovangigli V (2021) Kinetic theory of chemical reactions on crystal surfaces. Physica A 565:125573. https://doi.org/10.1016/j.physa.2020.125573

    Article  MathSciNet  Google Scholar 

  7. Bandura A (1999) Social cognitive theory: an agentic perspective. Asian J Soc Psychol 2(1):21–41. https://doi.org/10.1111/1467-839x.00024

    Article  MathSciNet  Google Scholar 

  8. Bandyopadhyay A, Miki K, Wakayama Y (2006) Writing and erasing information in multilevel logic systems of a single molecule using scanning tunneling microscope. Appl Phys Lett 89(24)

    Google Scholar 

  9. Bussche E, Noortgate W, Reynvoet B (2009) Mechanisms of masked priming: a meta-analysis. Psychol Bull 135(3):452–477. https://doi.org/10.1037/a0015329

    Article  Google Scholar 

  10. BrainMap (n.d.) Activation likelihood estimation (ALE). Retrieved from http://www.brainmap.org/ale/

  11. Bavel J, Mende-Siedlecki P, Brady W, Reinero D (2016) Contextual sensitivity in scientific reproducibility. Proc Natl Acad Sci 113(23):6454–6459. https://doi.org/10.1073/pnas.1521897113

    Article  Google Scholar 

  12. Boeck P, Jeon M (2018) Perceived crisis and reforms: issues, explanations, and remedies. Psychol Bull 144(7):757–777. https://doi.org/10.1037/bul0000154

    Article  Google Scholar 

  13. Bach DR, Melinščak F, Fleming SM, Voelkle MC (2020) Calibrating the experimental measurement of psychological attributes. Nat Hum Behav 4(12):1229–1235. https://doi.org/10.1038/s41562-020-00976-8

  14. Bandyopadhyay A (2020) Nanobrain: the making of an artificial brain from a time crystal. Boca Raton CRC Press, Taylor and Francis. ISBN: 9781439875490. https://doi.org/10.1201/9780429107771

  15. Barakat M, Carrier J, Debas K, Lungu O, Fogel S, Vandewalle G, Doyon J et al (2013) Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Human Brain Map** 34(11):2918–2928. https://doi.org/10.1002/hbm.22116

  16. Berlucchi G, Aglioti S, Marzi CA, Tassinari G (1995) Corpus callosum and simple visuomotor integration. Neuropsychologia 33(8):923–936. https://doi.org/10.1016/0028-3932(95)00031-W

  17. Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78(4):307–318. https://doi.org/10.1007/s004220050435

  18. Calhoun V, Miller R, Pearlson G, Adalı T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery. Neuron 84(2):262–274. https://doi.org/10.1016/j.neuron.2014.10.015

    Article  Google Scholar 

  19. Cavaco S, Anderson SW, Allen JS, Castro-Caldas A, Damasio H (2004) The scope of preserved procedural memory in amnesia. Brain: J Neurol 127(Pt 8):1853–1867. https://doi.org/10.1093/brain/awh208

  20. Chein JM, Schneider W (2005) Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cogn Brain Res 25(3):607–623. https://doi.org/10.1016/j.cogbrainres.2005.08.013

  21. Chen Z, Kosovicheva A, Wolfe B, Cavanagh P, Gorea A, Whitney D (2018) Unifying visual space across the left and right hemifields. Psychol Sci 29(3):356–369. https://doi.org/10.1177/0956797617735534

  22. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608. https://doi.org/10.1038/386604a0

  23. Crespo-EguĂ­laz N, MagallĂłn S, Narbona J (2014) Procedural skills and neurobehavioral freedom. Front Hum Neurosci. Jun 20; 8:449. https://doi.org/10.3389/fnhum.2014.00449. PMID 24999324; PMCID PMC4064662.

  24. Deco G, Vidaurre D, Kringelbach ML (2021) Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nat Hum Behav 5:497–511. https://doi.org/10.1038/s41562-020-01003-6

    Article  Google Scholar 

  25. Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3):252–262. https://doi.org/10.1016/S0028-3932(02)00158-6

  26. Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95(24):14529–14534

    Article  Google Scholar 

  27. Deardorff A (2020) Assessing the impact of introductory programming workshops on the computational reproducibility of biomedical workflows. https://doi.org/10.1101/2020.03.09.983429

  28. Eickhoff SB, Constable RT, Yeo BTT (2018) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347

    Article  Google Scholar 

  29. Eagleman D (2008) Human time perception and its illusions. Curr Opin Neurobiol 18(2):131–136. https://doi.org/10.1016/j.conb.2008.06.002

    Article  Google Scholar 

  30. Escobar WA (2013) Quantized visual awareness. Front Psychol 4. https://doi.org/10.3389/fpsyg.2013.00869

  31. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  32. Friston KJ, Stephan KE (2007) Free-energy and the brain. Synthese 159(3):417–458. https://doi.org/10.1007/s11229-007-9237-y

    Article  Google Scholar 

  33. Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris 100(1–3):70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001. Epub 2006 Nov 13 PMID: 17097864

    Article  Google Scholar 

  34. Glasser MF et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  Google Scholar 

  35. Ghosh S, Fujita D, Bandyopadhyay A (2015) An organic jelly made fractal logic gate with an infinite truth table. Sci Rep 5(1):11265

    Article  Google Scholar 

  36. Ghosh S, Sahu S, Agrawal L, Shiga T, Bandyopadhyay A (2016) Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell. J Integr Neurosci 15(04):403–433

    Article  Google Scholar 

  37. Hagmann P et al (2008) Map** the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  Google Scholar 

  38. Hubert V, Beaunieux H, Chételat G, Platel H, Landeau B, Danion J-M, Viader F, Desgranges B, Francis E (2007) The dynamic network subserving the three phases of cognitive procedural learning. Human Brain Map** 28(12):1415–1429. https://doi.org/10.1002/hbm.20354

  39. Hillebrand A et al (2016) Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc Natl Acad Sci USA 113:3867–3872

    Article  Google Scholar 

  40. Huntenburg JM, Bazin PL, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31

    Article  Google Scholar 

  41. Hugdahl K (2000) Lateralization of cognitive processes in the brain. Acta Physiol (Oxf) 105(2–3):211–235

    Google Scholar 

  42. Henrich J, Heine S, Norenzayan A (2010) The weirdest people in the world? Behav Brain Sci 33(2–3):61–83. https://doi.org/10.1017/s0140525x0999152x

    Article  Google Scholar 

  43. Haggard P, Clark S, Kalogeras J (2002) Voluntary action and conscious awareness. Nat Neurosci 5(4):382–385. https://doi.org/10.1038/nn827

    Article  Google Scholar 

  44. Hall P, Fong G (2015) Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior. Front Human Neurosci 9. https://doi.org/10.3389/fnhum.2015.00117

  45. Hutchison R, Womelsdorf T, Allen E, Bandettini P, Calhoun V, Corbetta M, Chang C et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079

    Article  Google Scholar 

  46. Julius MS, Adi-Japha E (2016) A developmental perspective in learning the mirror-drawing task. Front Human Neurosci 10. https://doi.org/10.3389/fnhum.2016.00083

  47. Karolis VR, Corbetta M, Thiebaut de Schotten M (2019) The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat Commun Mar 29; 10(1):1417. https://doi.org/10.1038/s41467-019-09344-1. PMID 30926845; PMCID PMC6441088.

  48. Kiefer AW, Gualberto Cremades J, Myer GD (2014) Train the brain: novel electroencephalography data indicate links between motor learning and brain adaptations. J Novel Physiotherapies 4(2). https://doi.org/10.4172/2165-7025.1000198

  49. Kidgell DJ, Frazer AK, Pearce AJ (2017) The effect of task complexity influencing bilateral transfer. Int J Exerc Sci 10(8):1174–1183

    Google Scholar 

  50. Klatzky RL (1994) On the relation between motor imagery and visual imagery. Behav Brain Sci 17(2):212–213. https://doi.org/10.1017/S0140525X00034178

  51. Knightly AE (1934) The process of learning as shown by the mirror- drawing experiment. University of Massachusetts, Amherst

    Google Scholar 

  52. Knowlton BJ, Siegel ALM, Moody TD (2017) Procedural learning in humans. In Eichenbaum H, Byrne JH (eds) Learning and memory: a comprehensive reference, 2nd ed. Elsevier, pp 295–312. https://doi.org/10.1016/B978-0-12-809324-5.21085-7

  53. Kowalik ZJ, Wrobel A, Rydz A (1996) Why does the human brain need to be a nonlinear system? Behav Brain Sci 19(2):302–303. https://doi.org/10.1017/S0140525X0004276X

  54. Krigolson OE, Cheng D, Binsted G (2015) The role of visual processing in motor learning and control: insights from electroencephalography. Vis Res 110:277–285. https://doi.org/10.1016/j.visres.2014.12.024

  55. Kunisato Y (2019) Introduction to reproducible psychological research. https://doi.org/10.31234/osf.io/x8js5

  56. Lange RK, Braun C, Godde B (2006) Coordinate processing during the left-to-right hand transfer investigated by EEG. Exp Brain Res 168:547–556. https://doi.org/10.1007/s00221-005-0117-8

    Article  Google Scholar 

  57. Lancaster JL, Laird AR, Eickhoff SB, Martinez MJ, Fox PM, Fox PT (2012) Automated regional behavioral analysis for human brain images. Front Neuroinform 6:23. https://doi.org/10.3389/fninf.2012.00023

  58. Landau A, Elwan D, Holtz S, Prinzmetal W (2012) Voluntary and involuntary attention vary as a function of impulsivity. Psychon Bull Rev 19(3):405–411. https://doi.org/10.3758/s13423-012-0240-z

    Article  Google Scholar 

  59. Lin CL, Shaw FZ, Young KY, Lin CT, Jung TP (2012) Neuroimage 60(4):2258–2273. https://doi.org/10.1016/j.neuroimage.2012.02.008. Epub 2012 Feb 13

    Article  Google Scholar 

  60. Logan GD (1988) Toward an instance theory of automatization. Psychol Rev 95(4):492–527. https://doi.org/10.1037/0033-295X.95.4.492

  61. Lobier M, Siebenhuhner F, Palva S, Palva JM (2014) Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 85:853–872

    Article  Google Scholar 

  62. MagallĂłn S, Narbona J, Crespo-EguĂ­laz N (2016) Acquisition of motor and cognitive skills through repetition in typically develo** children. PLOS ONE 11(7):e0158684. https://doi.org/10.1371/journal.pone.0158684

  63. Marzi CA (2010) Asymmetry of interhemispheric communication. Wiley Interdiscip Rev Cogn Sci 1(3):433–438. https://doi.org/10.1002/wcs.53

  64. Markov NT et al (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259

    Article  Google Scholar 

  65. Mak JN, Chan RH, Wong SW (2013) Spectral modulation of frontal EEG activities during motor skill acquisition: task familiarity monitoring using single-channel EEG. Annu Int Conf IEEE Eng Med Biol Soc 2013:5638–5641. https://doi.org/10.1109/EMBC.2013.6610829. PMID: 24111016

    Article  Google Scholar 

  66. Miall RC, Cole J (2007) Evidence for stronger visuo-motor than visuo-proprioceptive conflict during mirror drawing performed by a deafferented subject and control subjects. Exp Brain Res 176(3):432–439. https://doi.org/10.1007/s00221-006-0626-0

  67. Nowicka A, Grabowska A, Fersten E (1996) Interhemispheric transmission of information and functional asymmetry of the human brain. Neuropsychologia 34(2):147–151. https://doi.org/10.1016/0028-3932(95)00064-X

  68. Neurosynth (n.d.) Interhemispheric transfer. Retrieved from https://neurosynth.org/analyses/terms/interhemispheric/

  69. Newell B, Shanks D (2014) Unconscious influences on decision making: a critical review. Behav Brain Sci 37(1):1–19. https://doi.org/10.1017/s0140525x12003214

    Article  Google Scholar 

  70. Papaya (n.d.) Papaya viewer. Retrieved from https://rii-mango.github.io/Papaya/

  71. Pradhan B, Bandyopadhyay A, Pal AJ (2004) Molecular level control of donor/acceptor heterostructures in organic photovoltaic devices. Appl Phys Lett 85(4):663–665

    Article  Google Scholar 

  72. Poldrack R (2019) The costs of reproducibility. Neuron 101(1):11–14. https://doi.org/10.1016/j.neuron.2018.11.030

    Article  Google Scholar 

  73. Pattanayak A, Dutta T, Pranjal P, Singh P, Sahoo P, Sarkar S, Bandyopadhyay A (2022) Meta-analysis of fMRI for emotional and cognitive states shows hierarchical invariant optimization in brain. Proc Trends Electron Health Inform 376:255–265

    Article  Google Scholar 

  74. Prete G, Fabri M, Foschi N, Tommasi L (2017) Asymmetry for symmetry: right-hemispheric superiority in bi-dimensional symmetry perception. Symmetry 9(5):76. https://doi.org/10.3390/sym9050076

  75. Pouratian N, Sheth SA, Martin NA, Toga AW (2003) Shedding light on brain map**: advances in human optical imaging. Trends Neurosci 26(5):277–282

    Article  Google Scholar 

  76. Reddy S, Sonker D, Singh P, Saxena K, Singh S, Chhajed R et al (2018) A brain-like computer made of time crystal: could a metric of prime alone replace a user and alleviate programming forever? Soft Comput Appl:1–43

    Google Scholar 

  77. Roebers CM, Kauer M (2009) Motor and cognitive control in a normative sample of 7-year-olds. Dev Sci 12(1):175–181. https://doi.org/10.1111/j.1467-7687.2008.00755.x

  78. Russell P (2013) The brain book, 1st ed. Routledge, London. https://doi.org/10.4324/9780203713600

  79. Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12(4):191–200

    Article  Google Scholar 

  80. Schmidt MF (2008) Using both sides of your brain: the case for rapid interhemispheric switching. PLoS Biology 6(10):e269. https://doi.org/10.1371/journal.pbio.0060269

  81. Simmons JP, Nelson LD, Simonsohn U (2011) False-positive psychology. Psychol Sci 22(11):1359–1366. https://doi.org/10.1177/0956797611417632

  82. Smyth S, Casey D, Cooney A, Higgins A, McGuinness D, Bainbridge E, Murphy K et al (2016) Qualitative exploration of stakeholders’ perspectives of involuntary admission under the mental health act 2001 in Ireland. Int J Mental Health Nurs 26(6):554–569. https://doi.org/10.1111/inm.12270

  83. Sun Y, Collinson S, Suckling J, Sim K (2018) Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia. Schizophr Bull 45(3):659–669. https://doi.org/10.1093/schbul/sby077

    Article  Google Scholar 

  84. Sochat V, Eisenberg I, Enkavi A, Li J, Bissett P, Poldrack R (2016) The experiment factory: standardizing behavioral experiments. Front Psychol 7. https://doi.org/10.3389/fpsyg.2016.00610

  85. Saxena K, Singh P, Sahoo P, Sahu S, Ghosh S, Ray K, Fujita D et al (2020) Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron. Fractal Fract 4(2):11

    Google Scholar 

  86. Singh P, Saxena K, Singhania A, Sahoo P, Ghosh S, Chhajed R, Fujita D et al (2020) A self-operating time crystal model of the human brain: can we replace entire brain hardware with a 3D fractal architecture of clocks alone? Information 11(5):238

    Google Scholar 

  87. Saxena K, Singh P, Sahoo P, Ghosh S, Krishnanda D, Ray K, Fujita D, Bandyopadhyay A (2022) All basics that are wrong with the current concept of time crystal: learning from the polyatomic time crystals of protein, microtubule, and neuron. Proc Trends Electron Health Inform 376:243–254

    Article  Google Scholar 

  88. Singh P, Ray K, Bandyopadhyay A (2022) Biological antenna to the humanoid bot: electromagnetic resonances in biomaterials. Studies in rhythm engineering (SRE). Springer Singapore. https://doi.org/10.1007/978-981-16-9677-0

  89. Singh P et al (2021a) Electrophysiology using coaxial atom probe array: live imaging reveals hidden circuits of a hippocampal neural network. J Neurophysiol 125(6):2107–2116

    Article  Google Scholar 

  90. Singh P et al (2021b) Cytoskeletal filaments deep inside a neuron are not silent: they regulate the precise timing of nerve spikes using a pair of vortices. Symmetry 13(5):821. https://doi.org/10.3390/sym13050821

  91. Singh P et al (2021c) Quaternion, octonion to dodecanion manifold: stereographic projections from infinity lead to a self-operating mathematical universe. In: Singh P, Gupta RK, Ray K, Bandyopadhyay A (eds) Proceedings of international conference on trends in computational and cognitive engineering. Advances in intelligent systems and computing, vol 1169. Springer, Singapore, pp 55–77

    Google Scholar 

  92. Singh P et al (2021d) A space-time-topology-prime, stTS metric for a self-operating mathematical universe uses dodecanion geometric algebra of 2–20 D complex vectors. In: Ray K, Roy KC, Toshniwal SK, Sharma H, Bandyopadhyay A (eds) Proceedings of international conference on data science and applications. Lecture notes in networks and systems, vol 148. Springer, Singapore, pp 1–31

    Google Scholar 

  93. Soderstrom NC, Bjork RA (2015) Learning versus performance. Persp Psychol Sci 10(2):176–199. https://doi.org/10.1177/1745691615569000

  94. SOCR (n.d.) SOCR brain viewer. https://socr.umich.edu/HTML5/BrainViewer/

  95. Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3(5):348–359. https://doi.org/10.1038/nrn807. PMID: 11988774

    Article  Google Scholar 

  96. Thut G (2014) Modulating brain oscillations to drive brain function. PLoS Biology 12(12):e1002032. https://doi.org/10.1371/journal.pbio.1002032

  97. Vicari S (2005) Do children with developmental dyslexia have an implicit learning deficit? J Neurol Neurosurgery Psychiatry 76(10):1392–1397. https://doi.org/10.1136/jnnp.2004.061093

  98. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  Google Scholar 

  99. Waters RH, Sheppard R (1952) The mirror drawing experiment: a brief historical note. J Gen Psychol 46(1):63–72. https://doi.org/10.1080/00221309.1952.9710638

  100. Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105(3):558–584. https://doi.org/10.1037/0033-295X.105.3.558

  101. Willingham DB, Koroshetz WJ (1993) Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology 21(3):173–182. https://doi.org/10.3758/BF03327132

  102. Wong SWH, Chan RHM, Mak JN (2014) Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study. Int J Psychophysiol 91(1):16–21. https://doi.org/10.1016/j.ijpsycho.2013.09.004

  103. Wyatt T (2020) Reproducible research into human chemical communication by cues and pheromones: learning from psychology’s renaissance. Philos Trans R Soc B Biol Sci 375(1800):20190262. https://doi.org/10.1098/rstb.2019.0262

    Article  Google Scholar 

  104. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nature Meth 8(8):665–670. https://doi.org/10.1038/nmeth.1635

  105. Zhu H, Sun Y, Wang F (2013) Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions. Neural Regener Res 8(3):251–257. https://doi.org/10.3969/j.issn.1673-5374.2013.03.007

  106. Zhang W, Su Y, Tian B, Fei D (2022) Statistical assumptions and reproducibility in psychology: data mining based on open science. Front Psychol 13.https://doi.org/10.3389/fpsyg.2022.905977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanusree Dutta .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, T., Bandyopadhyay, A. (2024). Quantized Interhemispheric Energy Transfer: Learning Motorized Tasks. In: Emotion, Cognition and Silent Communication: Unsolved Mysteries. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-9334-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9334-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9333-8

  • Online ISBN: 978-981-99-9334-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation