Introduction

  • Chapter
  • First Online:
Knots and Primes

Part of the book series: Universitext ((UTX))

  • 209 Accesses

Abstract

In his youth, C.F. Gauss proved the law of quadratic reciprocity and further created the theory of genera for binary quadratic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another origin of knot theory goes back to the work of William Thomson (Lord Kelvin; 1824–1907) on atomic theory. He considered atoms as knotted vortex tubes of ether and tried to classify atoms in the correspondence with knots. Although his theory on atoms was discarded in physics, the subsequent work by his collaborator, P. Tait, on the classification of knots led their theory (unexpectedly) to the development of knot theory in mathematics.

References

  1. Artin, M., Mazur, B.: Etale Homotopy. Lecture Notes in Mathematics, vol. 100. Springer-Verlag, Berlin-New York (1969)

    Google Scholar 

  2. Chung, H.-J., Kim, D., Kim, M., Pappas, G., Park, J., Yoo, H.: Abelian arithmetic Chern–Simons theory and arithmetic linking numbers. Int. Math. Res. Not. 18, 5674–5702 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chung, H.-J., Kim, D., Kim, M., Park, J., Yoo, H.: Arithmetic Chern–Simons theory II. In: p-Adic Hodge Theory (2017 Simons Symposium on p-adic Hodge theory), pp. 81–128. Springer International Publishing, New York (2020)

    Google Scholar 

  4. Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for purturbative Chern–Simons theory with complex gauge group. Commun. Number Theory Phys. 3(2), 363–443 (2009)

    Article  MathSciNet  Google Scholar 

  5. Dunnington, G.W.: Carl Friedrich Gauss, Titan of Science. The Mathematical Association of America, Washington (2004)

    Google Scholar 

  6. Gauss, C.F.: Zur mathematischen Theorie der electrodynamischen Wirkungen. Werke V (1833)

    Google Scholar 

  7. Gauss, C.F.: Disquisitiones arithmeticae. Yale University, New Haven (1966)

    Google Scholar 

  8. Hirano, H., Kim, J., Morishita, M.: On arithmetic Dijkgraaf-Witten theory. Commun. Number Theory Phys. 17(1), 1–61 (2023)

    Article  MathSciNet  Google Scholar 

  9. Kapranov, M.: Analogies between the Langlands correspondence and topological quantum field theory. In: Progress in Mathematics, vol. 131, pp. 119–151. Birkhäuser, Basel (1995)

    Google Scholar 

  10. Kapranov, M.: Analogies between number fields and 3-manifolds, unpublished note (1996)

    Google Scholar 

  11. Kim, M.: Arithmetic gauge theory: a brief introduction. Mod. Phys. Lett. A 33(29), 1830012 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kim, M.: Arithmetic Chern-Simons theory I. In: Galois Cover, Grothendieck-Teichmüller Theory and Dessins d’Enfants – Interactions between Geometry, Topology, Number Theory and Algebra. Springer Proceedings in Mathematics & Statistics, vol. 330, pp. 155–180 (2020)

    Google Scholar 

  13. Kontsevich, M.: Vassiliev’s Knot Invariants, I. M. Gelfand Seminar. Advances in Soviet Mathematics, vol. 16, Part 2, pp. 137–150. American Mathematical Society, Providence (1993)

    Google Scholar 

  14. Manin, Y., Marcolli, M.: Holography principle and arithmetic of algebraic curves. Adv. Theor. Math. Phys. 5(3), 617–650 (2001)

    Article  MathSciNet  Google Scholar 

  15. Marcolli, M., Xu, Y.: Quantum statistical mechanics in arithmetic topology. J. Geom. Phys. 114, 153–183 (2017)

    Article  MathSciNet  Google Scholar 

  16. Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. (4) 6, 521–552 (1973)

    Google Scholar 

  17. Reznikov, A.: Three-manifolds class field theory (Homology of coverings for a nonvirtually b1-positive manifold). Sel. Math. New Ser. 3, 361–399 (1997)

    Article  Google Scholar 

  18. Reznikov, A.: Embedded incompressible surfaces and homology of ramified coverings of three-manifolds. Sel. Math. New Ser. 6, 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  19. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morishita, M. (2024). Introduction. In: Knots and Primes. Universitext. Springer, Singapore. https://doi.org/10.1007/978-981-99-9255-3_1

Download citation

Publish with us

Policies and ethics

Navigation