Multiscale Roughness Influence on Solute Transport in Fracture

  • Chapter
  • First Online:
Mass Transfer Dynamics of Contaminants in Fractured Media
  • 78 Accesses

Abstract

This chapter aims: ①To investigate the influence of multi-scale roughness on linear, power-law, and second-order polynomial relationships between the DL and Pe; ②To investigate the validation of the different relationships between the DL and Pe. To do this, we generate a series of 2D variable-aperture fractures with the different Hurst exponents. A wavelet analysis method is implemented to decompose the roughness of the fracture wall into the primary roughness and secondary roughness. The BTCs numerically generated from direct simulations are fitted by two inverse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proceed Roy Soc London a: Mathematic Phys Eng Sci 235(1200):67–77

    Article  Google Scholar 

  • Bolster D, Dentz M, Le Borgne T (2009) Solute dispersion in channels with periodically varying apertures. Phys Fluids 21(5):056601

    Article  Google Scholar 

  • Dentz M, Carrera J (2007) Mixing and spreading in stratified flow. Phys Fluids 19(1):017107

    Article  Google Scholar 

  • Detwiler RL, Rajaram H, Glass RJ (2000) Solute transport in variable-aperture fractures: an investigation of the relative importance of Taylor dispersion and macro-dispersion. Water Resour Res 36(7):1611–1625

    Article  Google Scholar 

  • Develi K, Babadagli T (1998) Quantification of natural fracture surfaces using fractal geometry. Math Geol 30(8):971–998

    Article  Google Scholar 

  • Dou Z, Zhou Z, Sleep BE (2013) Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: Lattice Boltzmann simulations. Adv Water Resour 61:1–11

    Article  Google Scholar 

  • Jacob B (1972) Dynamics of fluids in porous media. Elsevier, Amsterdam

    Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Am J Phys 51(3):286

    Article  Google Scholar 

  • Odling N (1994) Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech Rock Eng 27(3):135–153

    Article  Google Scholar 

  • Plouraboué F, Hulin JP, Roux S et al (1998) Numerical study of geometrical dispersion in self-affine rough fractures. Phys Rev E 58(3):3334–3346

    Article  Google Scholar 

  • Qian J, Chen Z, Zhan HB et al (2011) Solute transport in a filled single fracture under non-Darcian flow. Int J Rock Mech Min Sci 48(1):132–140

    Article  Google Scholar 

  • Roux S, Plouraboué F, Hulin J-P (1998) Tracer dispersion in rough open cracks. Transp Porous Media 32(1):97–116

    Article  Google Scholar 

  • Wang L, Cardenas MB (2014) Non-Fickian transport through two-dimensional rough fractures: assessment and prediction. Water Resour Res 50(2):871–884

    Article  Google Scholar 

  • Wang JSY, Narasimhan TN, Scholz CH (1988) Aperture correlation of a fractal fracture. J Geophys Res Solid Earth 93(B3):2216–2224

    Article  Google Scholar 

  • Wang L, Cardenas MB, Deng W et al (2012) Theory for dynamic longitudinal dispersion in fractures and rivers with poiseuille flow. Geophys Res Lett 5:L05401

    Google Scholar 

  • Wang L, Cardenas MB, Slottke DT et al (2015) Modification of the local cubic law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour Res 51(4):2064–2080

    Article  Google Scholar 

  • Wang M, Chen YF, Ma GW et al (2016) Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv Water Resour 96:373–388

    Article  Google Scholar 

  • Yeo IW, Ge S (2001) Solute dispersion in rock fractures by non-Darcian flow. Geophys Res Lett 28(20):3983–3986

    Article  Google Scholar 

  • Zimmerman R, Kumar S, Bodvarsson G (1991) Lubrication theory analysis of the permeability of rough-walled fractures. Int J Rock Mech Mining Sci Geomech Abstr 28(4):325–331

    Article  Google Scholar 

  • Zou L, **g L, Cvetkovic V (2015) Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int J Rock Mech Min Sci 75:102–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Dou .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dou, Z., Zhou, Z., Wang, J., Huang, Y. (2024). Multiscale Roughness Influence on Solute Transport in Fracture. In: Mass Transfer Dynamics of Contaminants in Fractured Media. Springer, Singapore. https://doi.org/10.1007/978-981-99-9187-7_9

Download citation

Publish with us

Policies and ethics

Navigation