Influence of Eddies on Solute Transport Through a Fracture

  • Chapter
  • First Online:
Mass Transfer Dynamics of Contaminants in Fractured Media
  • 75 Accesses

Abstract

The flow field’s heterogeneity has a big impact on the solute transport regime. In this chapter, Navier–Stokes flow and solute transport simulations are used to examine the influence of eddies on conservative solute transport through a two-dimensional (2D) single self-affine fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armaly BF, Durst F, Pereira J et al (1983) Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech 127:473–496

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous materials. Society of Petroleum Engineers, Richardson

    Google Scholar 

  • Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol J 11(4):418–433

    Google Scholar 

  • Bouquain J, Méheust Y, Bolster D et al (2012) The impact of inertial effects on solute dispersion in a channel with periodically varying aperture. Phys Fluids 24(8):083602

    Article  Google Scholar 

  • Boutt DF, Grasselli G, Fredrich JT et al (2006) Trap** zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys Res Lett 33(21):L21402

    Article  Google Scholar 

  • Briggs S, Karney BW, Sleep BE (2016) Numerical modeling of the effects of roughness on flow and eddy formation in fractures. J Rock Mech Geotechn Eng 9(2017):105–115

    Google Scholar 

  • Cardenas MB, Slottke DT, Ketcham RA et al (2007) Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophys Res Lett 34(14):L14404

    Article  Google Scholar 

  • Cardenas MB, Slottke DT, Ketcham RA et al (2009) Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. J Geophys Res 114(B6):B6204

    Google Scholar 

  • Chiogna G, Cirpka OA, Grathwohl P et al (2011) Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media. Water Resour Res 47(7):W07540

    Article  Google Scholar 

  • Cortis A, Berkowitz B (2005) Computing “anomalous” contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43(6):947–950

    Article  CAS  Google Scholar 

  • Cvetkovic V, Haggerty R (2002) Transport with multiple-rate exchange in disordered media. Phys Rev E 65(5):051308

    Article  CAS  Google Scholar 

  • de Dreuzy JR, Carrera J, Dentz M et al (2012) Time evolution of mixing in heterogeneous porous media. Water Resour Res 48(6):W06511

    Article  Google Scholar 

  • Dou Z, Zhou ZF (2015) Modelling of solute transport in a filled fracture: effects of heterogeneity of filled medium. J Hydrodynam Ser B 27(1):85–92

    Google Scholar 

  • Galenko PK, Danilov DA, Alexandrov DV (2015) Solute redistribution around crystal shapes growing under hyperbolic mass transport. Int J Heat Mass Transf 89(Supplement C:1054–1060.

    Google Scholar 

  • Gómez H, Colominas I, Navarrina F et al (2007) A finite element formulation for a convection–diffusion equation based on Cattaneo’s law. Comput Methods Appl Mech Eng 196(9):1757–1766

    Article  Google Scholar 

  • Gouze P, Le Borgne T, Leprovost R et al (2008) Non‐Fickian dispersion in porous media: 1. Multiscale measurements using single‐well injection withdrawal tracer tests. Water Resour Res 44(6):W06426

    Google Scholar 

  • Haggerty R, Gorelick SM (1995) Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour Res 10:2383–2400

    Google Scholar 

  • Kalospiros NS, Ocone R, Astarita G et al (1991) Analysis of anomalous diffusion and relaxation in solid polymers. Ind Eng Chem Res 30(5):851–864

    Article  CAS  Google Scholar 

  • Kitanidis PK (1994) The concept of the dilution index. Water Resour Res 30(7):2011–2026

    Article  CAS  Google Scholar 

  • Kosakowski G, Berkowitz B, Scher H (2001) Analysis of field observations of tracer transport in a fractured till. J Contam Hydrol 47(1):29–51

    Article  CAS  Google Scholar 

  • Lee SH, Yeo IW, Lee KK et al (2015) Tail shortening with develo** eddies in a rough-walled rock fracture. Geophys Res Lett 42(15):6340–6347

    Article  Google Scholar 

  • Qian J, Liang M, Chen Z et al (2012) Eddy correlations for water flow in a single fracture with abruptly changing aperture. Hydrol Process 26(22):3369–3377

    Article  Google Scholar 

  • Rolle M, Kitanidis PK (2014) Effects of compound-specific dilution on transient transport and solute breakthrough: a pore-scale analysis. Adv Water Resour 71:186–199

    Article  Google Scholar 

  • Wang L, Cardenas MB (2014) Non-Fickian transport through two-dimensional rough fractures: assessment and prediction. Water Resour Res 50(2):871–884

    Article  Google Scholar 

  • Wang L, Cardenas MB (2015) An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation. J Contam Hydrol 179:47–54

    Article  CAS  Google Scholar 

  • Wang M, Chen YF, Ma GW et al (2016) Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv Water Resour 96:373–388

    Article  Google Scholar 

  • Zhang Y, Benson DA, Baeumer B (2007) Predicting the tails of breakthrough curves in regional-scale alluvial systems. Groundwater 45(4):473–484

    Article  CAS  Google Scholar 

  • Zhou Q, Liu HH, Bodvarsson GS et al (2006) Evidence of multi-process matrix diffusion in a single fracture from a field tracer test. Transp Porous Media 63(3):473–487

    Article  Google Scholar 

  • Zimmerman MD, Bennett PC, Sharp JM et al (2002) Experimental determination of sorption in fractured flow systems. J Contamin Hydrol 58(1–2):51–77

    Article  CAS  Google Scholar 

  • Zou L, **g L, Cvetkovic V (2015) Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int J Rock Mech Min Sci 75:102–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Dou .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dou, Z., Zhou, Z., Wang, J., Huang, Y. (2024). Influence of Eddies on Solute Transport Through a Fracture. In: Mass Transfer Dynamics of Contaminants in Fractured Media. Springer, Singapore. https://doi.org/10.1007/978-981-99-9187-7_10

Download citation

Publish with us

Policies and ethics

Navigation