Diagnosis and Analysis of Multiple Sclerosis Disease Using Artificial Intelligence

  • Chapter
  • First Online:
Artificial Intelligence and Autoimmune Diseases

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1133))

  • 156 Accesses

Abstract

Multiple sclerosis (MS) is a chronic acquired idiopathic, autoimmune inflammatory demyelinating disorder of the central nervous system (CNS) that results in disruption of myelin sheath due to environmental and genetic factors. Demyelination and inflammation occur at the early stages of plaque formation which progresses to axonal damage and neuronal loss in the later stages of the disease. Despite having a typical progression there are no specific markers that can help in its easy and early diagnosis. Consequently, MS diagnosis primarily depends on the medical history of the patient, neurological examination including MRI scan, evoked potential test, Lumbar puncture, and some blood. However, it still takes some years to make a correct diagnosis since the condition worsens gradually. Moreover, the last decade has seen a significant rise in MS. However, advances in the applications of information technology and their intertwining with the medical domain have accounted for a considerable amount of data from normal and diseased individuals alike. More recently, artificial intelligence (AI) techniques in MS research have increased interest and provide means to facilitate its early diagnosis and better prognosis. The traditional methods, on the contrary, have relatively lower values of performance measures that reduce the effectiveness of the method. The AI approaches can make efficient utilization of observational data for early identification and prediction of the disease progression. In this paper, we have discussed the different ways through which AI techniques can help in the prognosis and early diagnosis of MS and the associated challenges of AI methods in MS research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charcot M (1868) Histologie de la sclerose en plaque. Gaz Hosp 41:554–556

    Google Scholar 

  2. Kalaria R, Ferrer I, Love S, Perry A, Ironside J (2015) Greenfield's neuropathology

    Google Scholar 

  3. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 47(6):707–717. https://doi.org/10.1002/1531-8249(200006)47:6%3c707::AID-ANA3%3e3.0.CO;2-Q

    Article  Google Scholar 

  4. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558. https://doi.org/10.1038/nri3871

    Article  Google Scholar 

  5. Arani LA, Hosseini A, Asadi F, Masoud SA, Nazemi E (2018) Intelligent computer systems for multiple sclerosis diagnosis: a systematic review of reasoning techniques and methods. Acta Inform Med 26(4). https://doi.org/10.5455/aim.2018.26.258-264

  6. Fangerau T, Schimrigk S, Haupts M, Kaeder M, Ahle G, Brune N, Klinkenberg K, Kotterba S, Möhring M, Sindern E (2004) Diagnosis of multiple sclerosis: comparison of the poser criteria and the new McDonald criteria. Acta Neurol Scand 109(6):385–389. https://doi.org/10.1111/j.1600-0404.2004.00246.x

    Article  Google Scholar 

  7. Ghadirian P, Dadgostar B, Azani R, Maisonneuve P (2001) A case-control study of the association between socio-demographic, lifestyle and medical history factors and multiple sclerosis. Can J Public Health 92(4):281–285. https://doi.org/10.1007/bf03404961

    Article  Google Scholar 

  8. Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Ghamdi K, et al (2022) Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sensors 22(20). https://doi.org/10.3390/s22207856

  9. Wildner P, Stasiołek M, Matysiak M (2020) Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Mult Scler Relat Disord 37. https://doi.org/10.1016/j.msard.2019.101452

  10. Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, Fazekas F, Filippi M, Frederiksen J, Gasperini C, Hacohen Y, Kappos L, Li DKB, Mankad K, Montalban X, Newsome SD, Oh J, Palace J, Rocca MA, Tintore M (2021) 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20(8):653–670. https://doi.org/10.1016/S1474-4422(21)00095-8

    Article  Google Scholar 

  11. Qazi S, Raza K, Iqbal N (2021) 5 Artificial intelligence in medicine (AIM): machine learning in cancer diagnosis, prognosis and therapy. In: Gupta D, U Kose, Le Nguyen B, Bhattacharyya S (eds) Artificial intelligence for data-driven medical diagnosis. De Gruyter, Berlin, Boston, pp 103–126. https://doi.org/10.1515/9783110668322-005

  12. Montolío A, Martín-Gallego A, Cegoñino J, Orduna E, Vilades E, Garcia-Martin E, Del Palomar AP (2021) Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography. Comput Biol Med 133:104416. https://doi.org/10.1016/j.compbiomed.2021.104416

    Article  Google Scholar 

  13. Afzal HMR, Luo S, Ramadan S, Lechner-Scott J (2022) The emerging role of artificial intelligence in multiple sclerosis imaging. Mult Scler J 28(6):849–858. https://doi.org/10.1177/1352458520966298

    Article  Google Scholar 

  14. Qazi W, Qazi S, Iqbal N, Raza K (2023) The scope and applications of nature-inspired computing in bioinformatics. In: Raza K (ed) Nature-inspired intelligent computing techniques in bioinformatics. Studies in computational intelligence, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-19-6379-7_1

  15. Bonacchi R, Filippi M, Rocca MA (2022) Role of artificial intelligence in MS clinical practice. NeuroImage: Clin 35:103065. https://doi.org/10.1016/j.nicl.2022.103065

  16. Raza K, Singh NK (2021) A tour of unsupervised deep learning for medical image analysis. Curr Med Imaging 17(9):1059–1077. https://doi.org/10.2174/1573405617666210127154257

    Article  Google Scholar 

  17. Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, Aktas O, Baum K, Berghoff M, Bittner S, die Multiple Sklerose Therapie Konsensus Gruppe (MSTKG) (2021) Multiple sclerosis treatment consensus group (MSTCG): position paper on disease-modifying treatment of multiple sclerosis 2021 (white paper). Der Nervenarzt 92:773–801.https://doi.org/10.1007/s00115-021-01157-2

  18. Simpson S, Wang W, Otahal P, Blizzard L, van der Mei IA, Taylor BV (2019) Latitude continues to be significantly associated with the prevalence of multiple sclerosis: an updated meta-analysis. J Neurol Neurosurg Psychiatry 90(11):1193–1200. https://doi.org/10.1136/jnnp-2018-320189

    Article  Google Scholar 

  19. Tao C, Simpson S, van der Mei I, Blizzard L, Havrdova E, Horakova D, Shaygannejad V, Lugaresi A, Izquierdo G, Trojano M, Duquette P, Taylor BV (2016) Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(12):1343–1349. https://doi.org/10.1136/jnnp-2016-314013

    Article  Google Scholar 

  20. Campbell JA, Simpson S Jr, Ahmad H, Taylor BV, van der Mei I, Palmer AJ (2020) Change in multiple sclerosis prevalence over time in Australia 2010–2017 utilising disease-modifying therapy prescription data. Mult Scler J 26(11):1315–1328. https://doi.org/10.1177/1352458519861270

    Article  Google Scholar 

  21. Qian Z, Li Y, Guan Z, Guo P, Zheng K, Du Y, Yin S, Chen B, Wang H, Jiang J, Qiu K, Zhang M (2023) Global, regional, and national burden of multiple sclerosis from 1990 to 2019: findings of global burden of disease study 2019. Front Public Health 11:220. https://doi.org/10.3389/fpubh.2023.1073278

    Article  Google Scholar 

  22. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Baneke P (2020) Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Mult Scler J 26(14):1816–1821. https://doi.org/10.1177/1352458520970841

    Article  Google Scholar 

  23. Atlas of MS (2021) Atlas-3rd edn-Epidemiology-report-EN-updated-30-9-20.pdf (msif.org)

    Google Scholar 

  24. Singhal BS, Advani H (2015) Multiple sclerosis in India: an overview. Ann Indian Acad Neurol 18(Suppl 1):S2. https://doi.org/10.4103/0972-2327.164812

    Article  Google Scholar 

  25. Dobson R, Giovannoni G (2019) Multiple sclerosis-a review. Eur J Neurol 26(1):27–40. https://doi.org/10.1111/ene.13819

    Article  Google Scholar 

  26. Hauser SL, Cree BA (2020) Treatment of multiple sclerosis: a review. Am J Med 133(12):1380–1390. https://doi.org/10.1016/j.amjmed.2020.05.049

    Article  Google Scholar 

  27. Doshi A, Chataway J (2017) Multiple sclerosis, a treatable disease. Clin Med 17(6):530. https://doi.org/10.7861/clinmedicine.16-6-s53

    Article  Google Scholar 

  28. Koriem KMM (2016) Multiple sclerosis: new insights and trends. Asian Pac J Trop Biomed 6(5):429–440. https://doi.org/10.1016/j.apjtb.2016.03.009

    Article  Google Scholar 

  29. Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9(3):409–416. https://doi.org/10.2174/157015911796557911

    Article  Google Scholar 

  30. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I (2015) Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurology 14(3):263–273. https://doi.org/10.1016/S1474-4422(14)70267-4

    Article  Google Scholar 

  31. Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV (2021) Role of environmental factors in multiple sclerosis. Expert Rev Neurother 21(12):1389–1408. https://doi.org/10.1080/14737175.2021.1978843

    Article  Google Scholar 

  32. Teymoori-Rad M, Sahraian MA, Mokhtariazad T, Nejati A, Mozdabadi RSK, Amiri MM, Shokri F, Marashi SM (2021) Illuminating the in vitro effects of Epstein-Barr virus and vitamin D on immune response in multiple sclerosis patients. J Neurovirol 27:260–271. https://doi.org/10.1007/s13365-021-00951-7

    Article  Google Scholar 

  33. Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple sclerosis: mechanisms and immunotherapy. Neuron 97(4):742–768. https://doi.org/10.1016/j.neuron.2018.01.021

    Article  Google Scholar 

  34. Howard J, Trevick S, Younger DS (2016) Epidemiology of multiple sclerosis. Neurol Clin 34(4):919–939. https://doi.org/10.1016/j.ncl.2016.06.016

    Article  Google Scholar 

  35. Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA (2021) B cells in multiple sclerosis—from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 17(7):399–414. https://doi.org/10.1038/s41582-021-00498-5

    Article  Google Scholar 

  36. Comi G, Bar‐Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, Sørensen PS, Hohlfeld R, Hauser SL (2021) Expert panel of the 27th annual meeting of the european charcot foundation: role of B cells in multiple sclerosis and related disorders. Ann Neurol 89(1):13–23https://doi.org/10.1002/ana.25927

  37. Guerrero BL, Sicotte NL (2020) Microglia in multiple sclerosis: friend or foe? Front Immunol 11:374. https://doi.org/10.3389/fimmu.2020.00374

    Article  Google Scholar 

  38. de Sa JCC, Airas L, Bartholome E, Grigoriadis N, Mattle H, Oreja-Guevara C, O’Riordan J, Sellebjerg F, Stankoff B, Vass K, Kieseier BC (2011) Symptomatic therapy in multiple sclerosis: a review for a multimodal approach in clinical practice. Ther Adv Neurol Disord 4(3):139–168. https://doi.org/10.1177/1756285611403646

    Article  Google Scholar 

  39. Bainbridge J, Miravalle A, Wong P (2017) Multiple sclerosis. In: DiPiro J, Talbert R, Yee G, Matzke G, Wells B, Posey L (eds) Pharmacotherapy: a pathophysiological approach, 10th edn. McGraw-Hill Education, New York, NY, pp 815–836

    Google Scholar 

  40. Goldman MD, Cohen JA, Fox RJ, Bethoux FA (2006) Multiple sclerosis: treating symptoms, and other general medical issues. Clevel Clin J Med 73(2):177–186. https://doi.org/10.3949/ccjm.73.2.177

    Article  Google Scholar 

  41. Brück W, Stadelmann C (2003) Inflammation and degeneration in multiple sclerosis. Neurol Sci 24:s265–s267. https://doi.org/10.1007/s10072-003-0170-7

    Article  Google Scholar 

  42. Meltzer EI, Costello FE, Frohman EM, Frohman TC (2018) New ways of “seeing” the mechanistic heterogeneity of multiple sclerosis plaque pathogenesis. J Neuroophthalmol 38(1):91–100. https://doi.org/10.1097/WNO.0000000000000633

    Article  Google Scholar 

  43. Kamm CP, Uitdehaag BM, Polman CH (2014) Multiple sclerosis: current knowledge and future outlook. Eur Neurol 72(3–4):132–141. https://doi.org/10.1159/000360528

    Article  Google Scholar 

  44. Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J (Yakhteh) 19(1):1–10. https://doi.org/10.22074/cellj.2016.4867

  45. Kalincik T, Buzzard K, Jokubaitis V, Trojano M, Duquette P, Izquierdo G, Girard M, Lugaresi A, Grammond P, Grand’Maison F, Oreja-Guevara C, MS Base Study Group (2014) Risk of relapse phenotype recurrence in multiple sclerosis. Mult Scler J 20(11):1511–1522. https://doi.org/10.1177/1352458514528

  46. Repovic P, Lublin FD (2011) Treatment of multiple sclerosis exacerbations. Neurol Clin 29(2):389–400. https://doi.org/10.1016/j.ncl.2010.12.012

    Article  Google Scholar 

  47. Vollmer T (2007) The natural history of relapses in multiple sclerosis. J Neurol Sci 256:S5–S13. https://doi.org/10.1016/j.jns.2007.01.065

    Article  Google Scholar 

  48. Wei W, Ma D, Li L, Zhang L (2021) Progress in the application of drugs for the treatment of multiple sclerosis. Front Pharmacol 12:724718. https://doi.org/10.3389/fphar.2021.724718

    Article  Google Scholar 

  49. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/WNL.0000000000000560

    Article  Google Scholar 

  50. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurology 4(5):281–288. https://doi.org/10.1016/S1474-4422(05)70071-5

    Article  Google Scholar 

  51. Sand IBK, Lublin FD (2013) Diagnosis and differential diagnosis of multiple sclerosis. CONTINUUM: Lifelong Learn Neurol 19(4):922–943. https://doi.org/10.1212/01.CON.0000433290.15468.21

  52. Sobel RA (2015) Greenfield's neuropathology, vol 2 Set

    Google Scholar 

  53. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 50(1):121–127. https://doi.org/10.1002/ana.1032

    Article  Google Scholar 

  54. Miller DH, Weinshenker BG, Filippi M, Banwell BL, Cohen JA, Freedman MS, Galetta SL, Hutchinson M, Johnson RT, Kappos L, Kira J, Polman CH (2008) Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler J 14(9):1157–1174. https://doi.org/10.1177/1352458508096878

    Article  Google Scholar 

  55. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  Google Scholar 

  56. Kuhlmann T, Lassmann H, Brück W (2008) Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 115:275–287. https://doi.org/10.1007/s00401-007-0320-8

    Article  Google Scholar 

  57. Ömerhoca S, Akkaş SY, İçen NK (2018) Multiple sclerosis: diagnosis and differential diagnosis. Arch Neuropsychiatry 55(Suppl 1):S1. https://doi.org/10.29399/npa.23418

  58. Hegen H, Teunissen CE, Sellebjerg F, Tumani H, Deisenhammer F (2015) Guidelines on cerebrospinal fluid analysis. Cerebrospinal Fluid Clin Neurol 407–428

    Google Scholar 

  59. Tumani H, Petereit HF, Gerritzen A, Gross CC, Huss A, Isenmann S, Jesse S, Khalil M, Lewczuk P, Lewerenz J, Zimmermann T (2020) S1 guidelines “lumbar puncture and cerebrospinal fluid analysis” (abridged and translated version). Neurol Res Pract 2:1–28. https://doi.org/10.1186/s42466-020-0051-z

    Article  Google Scholar 

  60. Zheng Y, Cai MT, Yang F, Zhou JP, Fang W, Shen CH, Zhang YX, Ding MP (2020) IgG index revisited: diagnostic utility and prognostic value in multiple sclerosis. Front Immunol 11:1799. https://doi.org/10.3389/fimmu.2020.01799

    Article  Google Scholar 

  61. Murray TJ (2006) Diagnosis and treatment of multiple sclerosis. BMJ 332(7540):525–527. https://doi.org/10.1136/bmj.332.7540.525

    Article  Google Scholar 

  62. Styner M, Lee J, Chin B, Chin M, Commowick O, Tran H, Warfield S (2008) 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. MIDAS journal 2008:1–6

    Google Scholar 

  63. Alijamaat A, NikravanShalmani A, Bayat P (2021) Multiple sclerosis identification in brain MRI images using wavelet convolutional neural networks. Int J Imaging Syst Technol 31(2):778–785. https://doi.org/10.1002/ima.22492

    Article  Google Scholar 

  64. E-Health Lab Dataset. http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets

  65. Iswisi AF, Karan O, Rahebi J (2021) Diagnosis of multiple sclerosis disease in brain magnetic resonance imaging based on the Harris hawks optimization algorithm. Biomed Res Int 2021. https://doi.org/10.1155/2021/3248834

  66. Acar ZY, Başçiftçi F, Ekmekci AH (2022) A Convolutional Neural Network model for identifying multiple sclerosis on brain FLAIR MRI. Sustain Comput: Inform Syst 35:100706. https://doi.org/10.1016/j.suscom.2022.100706

    Article  Google Scholar 

  67. Shmueli OZ, Solomon C, Ben-Eliezer N, Greenspan H (2022) Deep learning based multiple sclerosis lesion detection utilizing synthetic data generation and soft attention mechanism. In: Medical imaging 2022: computer-aided diagnosis, vol 12033. SPIE, pp 191–199. https://doi.org/10.1117/12.2613283

  68. Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, Khozeimeh F, Gorriz JM, Heras J, Panahiazar M, Nahavandi S, Acharya UR (2021) Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput Biol Med 136. https://doi.org/10.1016/j.compbiomed.2021.104697

  69. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Zeitschrift fur Medizinische Phys. 29(2):102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  70. Moazami F, Lefevre-Utile A, Papaloukas C, Soumelis V (2021) Machine learning approaches in study of multiple sclerosis disease through magnetic resonance images. Front Immunol 12:700582. https://doi.org/10.3389/fimmu.2021.700582

    Article  Google Scholar 

  71. Guo D, Fridriksson J, Fillmore P, Rorden C, Yu H, Zheng K, Wang S (2015) Automated lesion detection on MRI scans using combined unsupervised and supervised methods. BMC Med Imaging 15(1):1–21. https://doi.org/10.1186/s12880-015-0092-x

    Article  Google Scholar 

  72. Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, Scheel M, Paul F, Ritter K (2019) Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage: Clin 24. https://doi.org/10.1016/j.nicl.2019.102003.

  73. Kenney RC, Liu M, Hasanaj L, Joseph B, Al-Hassan AA, Balk LJ, Balcer LJ (2022) The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis. Neurology 99(11):e1100–e1112. https://doi.org/10.1212/WNL.0000000000200883

    Article  Google Scholar 

  74. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  75. Melingi SB, Vijayalakshmi V (2018) A hybrid approach for sub-acute ischemic stroke lesion segmentation using random decision forest and gravitational search algorithm. Curr Med Imaging Former Curr Med Imaging Rev 15(2):170–183. https://doi.org/10.2174/1573405614666180209150338

    Article  Google Scholar 

  76. Buyukturkoglu K, Zeng D, Bharadwaj S, Tozlu C, Mormina E, Igwe KC, Lee S, Habeck C, Brickman AM, Riley CS, de Jager PL, Sumowski JF, Leavitt VM (2021) Classifying multiple sclerosis patients on the basis of SDMT performance using machine learning. Mult Scler J 27(1):107–116. https://doi.org/10.1177/1352458520958362

    Article  Google Scholar 

  77. Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, Frackowiak R, Schluep M, du Pasquier R, Thiran JP, Krueger G, Bach Cuadra M, Granziera C (2016) Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging 43(6):1445–1454. https://doi.org/10.1002/jmri.25095

    Article  Google Scholar 

  78. Wang QQ, Yu SC, Qi X, Hu YH, Zheng WJ, Shi JX, Yao HY (2019) Overview of logistic regression model analysis and application. Zhonghua yu fang yi xue za zhi [Chin J Prev Med] 53(9):955–960. https://doi.org/10.3760/cma.j.issn.0253-9624.2019.09.018

    Article  Google Scholar 

  79. Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira A, Llado X (2019) Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET. IEEE Access 7. https://doi.org/10.1109/ACCESS.2019.2900198

  80. Krishna K, Murty MN (1999) Genetic K-means algorithm. IEEE Trans Syst, Man, Cybern, Part B (Cybernetics) 29(3):433–439. https://doi.org/10.1109/3477.764879

  81. Khayati R, Vafadust M, Towhidkhah F, Nabavi M (2008) Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput Biol Med 38(3):379–390. https://doi.org/10.1016/j.compbiomed.2007.12.005

    Article  Google Scholar 

  82. Mata J (2011) Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng Struct 33(3):903–910. https://doi.org/10.1016/j.engstruct.2010.12.011

    Article  Google Scholar 

  83. Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161

    Google Scholar 

  84. Chang CC, Lin CJ (2011) LIBSVM: a Library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  85. Ion-Margineanu A, Kocevar G, Stamile C, Sima DM, Durand-Dubief F, van Huffel S, Sappey-Marinier D (2017) Machine learning approach for classifying multiple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features. Front Neurosci 11:398. https://doi.org/10.3389/fnins.2017.00398

    Article  Google Scholar 

  86. Cunningham P, Delany SJ (2021) K-Nearest neighbour classifiers-A tutorial. ACM Comput Surv 54(6):1–17. https://doi.org/10.1145/3459665

    Article  Google Scholar 

  87. Qi Y (2012) Random forest for bioinformatics. in ensemble machine learning. Springer, Berlin/Heidelberg, Germany, pp 307–323.https://doi.org/10.1007/978-1-4419-9326-7_11

  88. Acquaviva M, Menon R, Di Dario M, Dalla Costa G, Romeo M, Sangalli F, Farina C (2020) Inferring multiple sclerosis stages from the blood transcriptome via machine learning. Cell Rep Med 1(4):100053. https://doi.org/10.1016/j.xcrm.2020.100053

    Article  Google Scholar 

  89. Afreen N, Patel R, Ahmed M, Sameer M (2021) A novel machine learning approach using boosting algorithm for liver disease classification. In: 2021 5th international conference on information systems and computer networks (ISCON). IEEE, pp 1–5. https://doi.org/10.1109/ISCON52037.2021.9702488

  90. Martynova E, Goyal M, Johri S, Kumar V, Khaibullin T, Rizvanov AA, Baranwal M (2020) Serum and cerebrospinal fluid cytokine biomarkers for diagnosis of multiple sclerosis. Mediat Inflamm 2020. https://doi.org/10.1155/2020/2727042

  91. Schapire RE (2013) Explaining adaboost. In: Empirical inference. Springer, Berlin/Heidelberg, Germany, pp 37–52.https://doi.org/10.1007/978-3-642-41136-6_5

  92. Mato-Abad V, Labiano-Fontcuberta A, Rodríguez-Yáñez S, García-Vázquez R, Munteanu CR, Andrade-Garda J, Domingo-Santos A, Galán Sánchez-Seco V, Aladro Y, Martínez-Ginés ML, Ayuso L, Benito-León J (2019) Classification of radiologically isolated syndrome and clinically isolated syndrome with machine-learning techniques. Eur J Neurol 26(7):1000–1005. https://doi.org/10.1111/ene.13923

    Article  Google Scholar 

  93. Jain S, Rajpal N, Yadav J (2020) Multiple sclerosis identification based on ensemble machine learning technique. SSRN Electron J. https://doi.org/10.2139/ssrn.3734806

    Article  Google Scholar 

  94. Monaghan AS, Huisinga JM, Peterson DS (2021) The application of principal component analysis to characterize gait and its association with falls in multiple sclerosis. Sci Rep 11(1):12811. https://doi.org/10.1038/s41598-021-92353-2

    Article  Google Scholar 

  95. Pontillo G, Penna S, Cocozza S, Quarantelli M, Gravina M, Lanzillo R, Marrone S, Costabile T, Inglese M, Morra VB, Riccio D, Elefante A, Petracca M, Sansone C, Brunetti A (2022) Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach. Eur Radiol 32(8):5382–5391. https://doi.org/10.1007/s00330-022-08610-z

    Article  Google Scholar 

  96. Zhang L, Wang M, Liu M, Zhang D (2020) A survey on deep learning for neuroimaging-based brain disorder analysis. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.00779

  97. Wani MA, Bhat FA, Afzal S, Khan AI (2020) Advances in deep learning. Springer

    Book  Google Scholar 

  98. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    Google Scholar 

  99. Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd

    Google Scholar 

  100. Vatian A, Gusarova N, Dobrenko N, Klochkov A, Nigmatullin N, Lobantsev A, Shalyto A (2019) Fusing of medical images and reports in diagnostics of brain diseases. In: Proceedings of the 2019 the international conference on pattern recognition and artificial intelligence, pp 102–108. https://doi.org/10.1145/3357777.3357793

  101. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 3(January). https://doi.org/10.1007/978-3-658-40442-0_9

  102. Zhang C, Song Y, Liu S, Lill S, Wang C, Tang Z, You Y, Gao Y, Klistorner A, Barnett M, Cai W (2019) MS-GAN: GAN-based semantic segmentation of multiple sclerosis lesions in brain magnetic resonance imaging. In: 2018 international conference on digital image computing: techniques and applications, DICTA 2018. https://doi.org/10.1109/DICTA.2018.8615771

  103. Singh NK, Raza K (2022) Progress in deep learning-based dental and maxillofacial image analysis: a systematic review. Expert Syst Appl 199:116968. https://doi.org/10.1016/j.eswa.2022.116968

    Article  Google Scholar 

  104. Vogelsanger C, Federau C (2021) Latent space analysis of vae and intro-vae applied to 3-dimensional mr brain volumes of multiple sclerosis, leukoencephalopathy, and healthy patients. ar**v:2101.06772

  105. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118. https://doi.org/10.1016/j.engappai.2017.06.006

    Article  Google Scholar 

  106. Siar H, Teshnehlab M (2019) Diagnosing and classification tumors and MS simultaneous of magnetic resonance images using convolution neural network∗. In: 2019 7th Iranian joint congress on fuzzy and intelligent systems, CFIS 2019, pp 1–4.https://doi.org/10.1109/CFIS.2019.8692148

  107. López-Dorado A, Ortiz M, Satue M, Rodrigo MJ, Barea R, Sánchez-Morla EM, Garcia-Martin E (2022) Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation. Sensors 22(1):167. https://doi.org/10.3390/s22010167

    Article  Google Scholar 

  108. Garcia-Martin E, Pablo LE, Herrero R, Ara JR, Martin J, Larrosa JM, Fernandez J (2013) Neural networks to identify multiple sclerosis with optical coherence tomography. Acta Ophthalmol 91(8):e628-634. https://doi.org/10.1111/aos.12156

    Article  Google Scholar 

  109. Yoo Y, Tang LYW, Li DKB, Metz L, Kolind S, Traboulsee AL, Tam RC (2019) Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome. Comput Methods Biomech Biomed Eng: Imaging Vis 7(3):250–259. https://doi.org/10.1080/21681163.2017.1356750

    Article  Google Scholar 

  110. Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD, Gabr RE (2020) Deep-learning-based neural tissue segmentation of mri in multiple sclerosis: effect of training set size. J Magn Reson Imaging 51(5):1487–1496. https://doi.org/10.1002/jmri.26959

    Article  Google Scholar 

  111. Gabr RE, Coronado I, Robinson M, Sujit SJ, Datta S, Sun X, Allen WJ, Lublin FD, Wolinsky JS, Narayana PA (2020) Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: a large-scale study. Mult Scler J 26(10):1217–1226. https://doi.org/10.1177/1352458519856843

    Article  Google Scholar 

  112. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9351, pp 234–241.https://doi.org/10.1007/978-3-319-24574-4_28

  113. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):3431–3440. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  114. LeCun Y (1987) PhD thesis: modeles connexionnistes de l'apprentissage (connectionist learning models)

    Google Scholar 

  115. Andermatt S, Pezold S, Cattin PC (2018) Automated segmentation of multiple sclerosis lesions using multi-dimensional gated recurrent units. Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 10670. LNCS, pp 31–42. https://doi.org/10.1007/978-3-319-75238-9_3

  116. Maggi P, Fartaria MJ, Jorge J, La Rosa F, Absinta M, Sati P, Kober T (2020) CVSnet: a machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed 33(5):e4283. https://doi.org/10.1002/nbm.4283

    Article  Google Scholar 

  117. McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Wiest R (2021) Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep 11(1):1087. https://doi.org/10.1038/s41598-020-79925-4

    Article  Google Scholar 

  118. Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE (2019) Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging 50(4):1260–1267. https://doi.org/10.1002/jmri.26693

    Article  Google Scholar 

  119. Shaul R, David I, Shitrit O, Riklin Raviv T (2020) Subsampled brain MRI reconstruction by generative adversarial neural networks. Med Image Anal 65:101747. https://doi.org/10.1016/j.media.2020.101747

    Article  Google Scholar 

  120. Hluštík P (2015) 3. Functional MRI in the diagnosis and prognosis of multiple sclerosis. Clin Neurophysiol 126(3):e30. https://doi.org/10.1016/j.clinph.2014.10.1621799. https://doi.org/10.3389/fimmu.2020.01799

  121. Singh NK, Raza K (2021) Medical image generation using generative adversarial networks: a review. In: Health informatics: a computational perspective in healthcare, studies in computational intelligence, vol 932. Springer, Berlin, pp 77–96.https://doi.org/10.1007/978-981-15-9735-0_5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaque Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, S., Amjad, M., Akram, F., Sami, N., Parveen, A. (2024). Diagnosis and Analysis of Multiple Sclerosis Disease Using Artificial Intelligence. In: Raza, K., Singh, S. (eds) Artificial Intelligence and Autoimmune Diseases. Studies in Computational Intelligence, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-99-9029-0_7

Download citation

Publish with us

Policies and ethics

Navigation