Effect of Input Torque on the Modulation Sidebands of Planetary Gears in a Wind Turbine Gearbox Under Gravity Excitations

  • Conference paper
  • First Online:
Vibration Engineering and Technology of Machinery, Volume II (VETOMAC 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 153))

  • 84 Accesses

Abstract

Planetary gears are the main components of the wind turbine gearbox (WTG). In the recent investigations of WTG, it has been found that the gravity of planetary gears acts as a fundamental source of external excitation, which considerably changes the planetary gears’ dynamics. In this study, a dynamic model of planetary gears with gravity excitation is developed, and dynamic response is computed using Newmark beta algorithm. Excitations due to time-varying mesh stiffness are also incorporated in the dynamic model, which are inherent in gears and are the primary source of internal excitations. The input torque effect is investigated on planetary gears’ dynamics under gravity excitations for two different mesh phase designs, namely, in-phased meshing and sequentially phased meshing. It is observed that the input torque significantly affects the amplitude of sidebands due to gravity excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahraman A. Planetary gear train dynamics. J Mech Des. 1994;116:713–20. https://doi.org/10.1115/1.2919441.

    Article  Google Scholar 

  2. Velex P, Flamand L. Dynamic response of planetary trains to mesh parametric excitations. J Mech Des Trans ASME. 1996;118:7–14. https://doi.org/10.1115/1.2826860.

    Article  Google Scholar 

  3. Parker RG. Physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. J Sound Vib. 2000;236:561–73. https://doi.org/10.1006/jsvi.1999.2859.

    Article  Google Scholar 

  4. Cunliffe F, Smith JD, Welbourn D. Dynamic tooth loads in epicyclic gears. J Eng Ind. 1974;95:578–84. https://doi.org/10.1115/1.3438367.

    Article  Google Scholar 

  5. Botman M. Epicyclic gear vibrations. J Eng Ind. 1976;98:811–5. https://doi.org/10.1115/1.3439034.

    Article  Google Scholar 

  6. Kahraman A. Load sharing characteristics of planetary transmissions. Mech Mach Theory. 1994;29:1151–65. https://doi.org/10.1016/0094-114X(94)90006-X.

    Article  MathSciNet  Google Scholar 

  7. Lin J, Parker RG. Analytical characterization of the unique properties of planetary gear free vibration. J Vib Acoust. 1999;121:316–21. https://doi.org/10.1115/1.2893982.

    Article  Google Scholar 

  8. Chaari F, Fakhfakh T, Hbaieb R, Louati J, Haddar M. Influence of manufacturing errors on the dynamic behavior of planetary gears. Int J Adv Manuf Technol. 2006;27:738–46. https://doi.org/10.1007/s00170-004-2240-2.

    Article  Google Scholar 

  9. Parker RG, Agashe V, Vijayakar SM. Dynamic response of a planetary gear system using a finite element/contact mechanics model. J Mech Des. 2000;122:304–10. https://doi.org/10.1115/1.1286189.

    Article  Google Scholar 

  10. Ambarisha VK, Parker RG. Nonlinear dynamics of planetary gears using analytical and finite element models. J Sound Vib. 2007;302:577–95. https://doi.org/10.1016/j.jsv.2006.11.028.

    Article  Google Scholar 

  11. Huo JF, Zhang J, Song YM. Finite Element Modeling and Stress Analysis for Planetary Gear with Thin Rim. Appl Mech Mater. 2012;164:379–82. https://doi.org/10.4028/www.scientific.net/AMM.164.379.

    Article  Google Scholar 

  12. Wang PY, Cai XL. Vibrational analysis of planetary gear trains by finite element method. Appl Mech Mater. 2013;284–287:1012–7. https://doi.org/10.4028/www.scientific.net/AMM.284-287.1012.

    Article  Google Scholar 

  13. Zeng Q, Jiang S, Wan L, Li X. Finite element modeling and analysis of planetary gear transmission based on transient meshing properties. Int J. Model Simul Sci Comput 2015;06:1550035. https://doi.org/10.1142/S179396231550035X.

  14. Cheon GJ, Parker RG. Influence of manufacturing errors on the dynamic characteristics of planetary gear systems. KSME Int J. 2004;18:606–21. https://doi.org/10.1007/s00170-004-2240-2.

    Article  Google Scholar 

  15. Abousleiman V, Velex P. A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets. Mech Mach Theory. 2006;41:725–48. https://doi.org/10.1016/j.mechmachtheory.2005.09.005.

    Article  Google Scholar 

  16. Wu X, Parker RG. Modal properties of planetary gears with an elastic continuum ring gear. J Appl Mech. 2008;75: 031014. https://doi.org/10.1115/1.2839892.

    Article  Google Scholar 

  17. Shweiki S, Mundo D, Korta J, Oranges P, Palermo A. Investigation of mesh phasing in a planetary gear train using combined FE and multibody simulations. In Proceedings of the 27th International conference on noise and vibration engineering ISMA; 2016. pp. 1407–1416.

    Google Scholar 

  18. Liu C, Yin X, Liao Y, Yi Y, Qin D. Hybrid dynamic modeling and analysis of the electric vehicle planetary gear system. Mech Mach Theory. 2020;150: 103860. https://doi.org/10.1016/j.mechmachtheory.2020.103860.

    Article  Google Scholar 

  19. Zhang C, Wei J, Wang F, Hou S, Zhang A, Lim TC. Dynamic model and load sharing performance of planetary gear system with journal bearing. Mech Mach Theory. 2020;151: 103898. https://doi.org/10.1016/j.mechmachtheory.2020.103898.

    Article  Google Scholar 

  20. Nejad AR, Guo Y, Gao Z, Moan T. Development of a 5 MW reference gearbox for offshore wind turbines. Wind Energy. 2016;19:1089–106. https://doi.org/10.1002/we.1884.

    Article  Google Scholar 

  21. Guo Y, Keller J, Lacava W. Combined effects of gravity, bending moment, bearing clearance, and input torque on wind turbine planetary gear load sharing, Am. Gear Manuf. Assoc. Fall Tech. Meet. 2012. http://www.ntis.gov/help/ordermethods.aspx.

  22. Guo Y, Keller J, Parker RG. Nonlinear dynamics and stability of wind turbine planetary gear sets under gravity effects. Eur J Mech A/Solids. 2014;47:45–57. https://doi.org/10.1016/j.euromechsol.2014.02.013.

    Article  Google Scholar 

  23. Qiu X, Han Q, Chu F. Load-sharing characteristics of planetary gear transmission in horizontal axis wind turbines. Mech Mach Theory. 2015;92:391–406. https://doi.org/10.1016/j.mechmachtheory.2015.06.004.

    Article  Google Scholar 

  24. Mbarek A, Hammami A, Del Rincon AF, Chaari F, Rueda FV, Haddar M. Effect of gravity of carrier on the dynamic behavior of planetary gears, Lect. Notes Mech. Eng. 2018; 975–983. https://doi.org/10.1007/978-3-319-66697-6_96.

  25. Inalpolat M, Kahraman A. A theoretical and experimental investigation of modulation sidebands of planetary gear sets. J Sound Vib. 2009;323:677–96. https://doi.org/10.1016/j.jsv.2009.01.004.

    Article  Google Scholar 

  26. Dewangan P, Parey A, Hammami A, Chaari F, Haddar M. Damage detection in wind turbine gearbox using modal strain energy. Eng Fail Anal. 2020;107: 104228. https://doi.org/10.1016/j.engfailanal.2019.104228.

    Article  Google Scholar 

  27. Chaari F, Abbes MS, Rueda FV, del Rincon AF, Haddar M. Analysis of planetary gear transmission in non-stationary operations. Front Mech Eng. 2013;8:88–94. https://doi.org/10.1007/s11465-013-0361-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palash Dewangan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dewangan, P., Parey, A. (2024). Effect of Input Torque on the Modulation Sidebands of Planetary Gears in a Wind Turbine Gearbox Under Gravity Excitations. In: Tiwari, R., Ram Mohan, Y.S., Darpe, A.K., Kumar, V.A., Tiwari, M. (eds) Vibration Engineering and Technology of Machinery, Volume II. VETOMAC 2021. Mechanisms and Machine Science, vol 153. Springer, Singapore. https://doi.org/10.1007/978-981-99-8986-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8986-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8985-0

  • Online ISBN: 978-981-99-8986-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation