Influence of Vermicompost on Soil Health

  • Chapter
  • First Online:
Earthworms and Vermicomposting

Abstract

The influence of vermicompost on soil health is a topic of increasing significance in sustainable agriculture and land management. This chapter provides a concise overview of the multifaceted impacts of vermicompost on soil health along with its benefits. Firstly, it enhances soil structure by improving aggregation and aeration, thus promoting root growth and water infiltration. Secondly, vermicompost serves as a valuable source of essential plant nutrients, including nitrogen, phosphorus, potassium, and micro-nutrients. Its slow-release properties ensure a steady supply of nutrients to plants, reducing the need for synthetic fertilizers and minimizing nutrient runoff, which can be harmful to water bodies. Vermicompost also plays a crucial role in pH regulation, hel** to buffer soil pH toward a neutral range, which is favorable for most crops. It mitigates soil acidity and alkalinity, creating a more stable and conducive environment for plant growth. Furthermore, the use of vermicompost has been linked to increased soil organic carbon content, which not only improves soil fertility but also contributes to carbon sequestration, aiding in climate change mitigation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott I, Parker CA (1981) Interactions between earthworms and their soil environment. Soil Biol Biochem 13:191–197

    Article  Google Scholar 

  • Adhikary S (2012) Vermicompost, the story of organic gold: a review. Agric Sci 3(7):905–917

    Google Scholar 

  • Adi AJ, Noor ZM (2009) Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour Technol 100:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Azeem M, Ahmed N (2009) Productivity of ginger (Zingiber officinale) by amendment of vermicompost and biogas slurry in saline soils. Pak J Bot 41:3107–3116

    Google Scholar 

  • Aira M, Dominguez J (2008) Optimizing vermicomposting of animal wastes: effects of rate of manure application on carbon loss and microbial stabilization. J Environ Manag 88:1525–1529

    Article  Google Scholar 

  • Aksakal EL, Sari S, Angin I (2016) Effects of vermicompost application on soil aggregation and certain physical properties. Land Degrad Dev 27:983–995

    Article  Google Scholar 

  • Alvarez-Bernal D, Garcia-Diaz EL, Contreras-Ramos SM, Dendooven L (2006) Dissipation of polycyclic aromatic hydrocarbons from soil added with manure or vermicompost. Chemosphere 65:1642–1651

    Article  CAS  PubMed  Google Scholar 

  • Alves MR, Landgraf MD, Rezende MOO (2001) Sorption and desorption of the herbicide alachlor on humic acid fractions from two vermicomposts. J Environ Sci Health 36(6):797–808

    Article  CAS  Google Scholar 

  • Angelova VR, Akova VI, Artinova NS, Ivanov KI (2013) The effect of organic amendments on soil chemical characteristics. Bulgarian J Agric Sci 19:958–971

    Google Scholar 

  • Ansari AA (2008) Effect of vermicompost on the productivity of potato (Solanum tuberosum), spinach (Spinacia oleracea) and turnip (Brassica campestris). World J Agric Sci 4:333–336

    Google Scholar 

  • Ansari AA, Kumar S (2010) Effect of vermiwash and veramicompost on soil parameters and productivity of okra (Abelmoschus esculents) in Guyana. Curr Adv Agric Sci 2:1

    Google Scholar 

  • Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD (2008) Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39:91–99

    Article  Google Scholar 

  • Araujo Y, Luizao FJ, Barros E (2004) Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biol Fertil Soils 39:146–152

    Article  Google Scholar 

  • Atiyeh RM, Arancon NQ, Edwards CA, Metzger JD (2000) Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour Technol 75:175–180

    Article  CAS  Google Scholar 

  • Atiyeh RM, Edwards CA, Subler S, Metzger JD (2001) Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour Technol 78:11–20

    Article  CAS  PubMed  Google Scholar 

  • Atiyeh R, Lee S, Edwards CA, Arancon N, Metzger J (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14. https://doi.org/10.1016/S0960-8524(02)00017-2

    Article  CAS  PubMed  Google Scholar 

  • Azarmi R, Giglou MT, Taleshmikail RD (2008a) Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr J Biotechnol 7(14):2397–2401

    CAS  Google Scholar 

  • Azarmi R, Ziveh PS, Satari MR (2008b) Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum). Pak J Biol Sci 11(14):1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Bayon RC, Binet F (2006) Earthworm changes the distribution and availability of phosphorus in organic substrates. Soil Biol Biochem 38:235–246

    Article  Google Scholar 

  • Beck-friis B, Smars S, Jonsson H, Kirchmann H (2001) Gaseous emission of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J Agric Eng Res 78:423–430

    Article  Google Scholar 

  • Benitez E, Nogales R, Elvira C, Masciandaro G, Ceccanti B (1999) Enzyme activities as indicators of the stabilization of sewage sludge composting with Eisenia foetida. Bioresour Technol 67:297–303

    Article  CAS  Google Scholar 

  • Bhat SA, Singh J, Vig AP (2015) Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia foetida: Genotoxic assessment by Allium cepa test. Environ Sci Pollut Res 22:11236–11254

    Article  CAS  Google Scholar 

  • Blair JM, Parmelee RW, Lavelle P (1995) Influences of earthworms on biogeochemistry. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis, Boca Raton, pp 127–158

    Google Scholar 

  • Cabrera ML, Kissel DE, Vigil MF (2005) Nitrogen mineralization from organic residues: research opportunities. J Environ Qual 34:75–79

    Article  CAS  PubMed  Google Scholar 

  • Capowiez Y, Cadoux S, Bouchand P, Roger-Estrade J, Richard G, Boizard H (2009) Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol Biochem 41:711–717

    Article  CAS  Google Scholar 

  • Chaudhuri PS, Pal TK, Bhattacharjee G, Dey SK (2000) Chemical changes during vermicomposting (Perionyx excavatus) of kitchen waste. Trop Ecol 41(1):107–110

    Google Scholar 

  • Chowdappa P, Biddappa CC, Sujatha S (1999) Efficient recycling of organic wastes in arecanut (Areca catechu) and cocoa (Theobroma cacao) plantation through vermicomposting. Indian J Agric Sci 69:563–566

    Google Scholar 

  • Christy MAV, Ramalingam R (2005) Influence of sago wastes pressmud: mixture on the growth and reproduction of an Indian epigeic earthworm Perionyx excavatus (Perrier). Indian J Environ Ecoplan 10:291–296

    CAS  Google Scholar 

  • Crusmey JM, LeMoine JM, Vogel CS, Nadelhoffer KJ (2014) Historical patterns of exotic earthworm distribution inform contemporary associations with soil physical and chemical factors across a northern temperate forest. Soil Biol Biochem 68:503–514

    Article  Google Scholar 

  • Curry JP, Byrne D (1992) The role of earthworms in straw decomposition and nitrogen turnover in arable land in Ireland. Soil Biol Biochem 24:1409–1412

    Article  Google Scholar 

  • Datar MT, Rao MN, Reddy S (1997) Vermicomposting-a technology option for solid waste management. J Solid Waste Technol Manag 24:89–93

    CAS  Google Scholar 

  • Deka H, Deka S, Baruah C, Das J, Hoque S, Sarma H, Sarma N (2011) Vermicomposting potentiality of Perionyx excavates for recycling of waste biomass of java citronella-an aromatic oil yielding plant. Bioresour Technol 102:11212–11217

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Moreno L, Pena A (2009) Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Sci Total Environ 407:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Doan TT, Henry-des-Tureaux T, Rumpel C, Janeau JL, Jouquet P (2015) Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment. Sci Total Environ 514:147–154

    Article  CAS  PubMed  Google Scholar 

  • Dominguez J, Edwards CA, Subler S (1997) A comparison of vermicomposting and composting. Biocycle 38:57–59

    CAS  Google Scholar 

  • Edwards CA (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp 21–31

    Google Scholar 

  • Edwards CA, Arancon NQ (2004) Earthworm ecology. In: Edward CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 345–380

    Chapter  Google Scholar 

  • Elliott PW, Knight D, Anderson JM (1990) Denitrification in earthworm casts and soil from pastures under different fertilizer and drainage regimes. Soil Biol Biochem 22:601–605

    Article  CAS  Google Scholar 

  • Fang M, Wong JWC, Ma KK, Wong MH (1999) Co-composting of sewage sludge and coal fly ash: nutrient transformations. Bioresour Technol 67:19–24

    Article  CAS  Google Scholar 

  • Fernandez-Bayo JD, Romero E, Schnitzler F, Burauel P (2008) Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts. Environ Pollut 154:330–337

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Bayo JD, Nogales R, Romero E (2009) Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur J Soil Sci 60:935–944

    Article  CAS  Google Scholar 

  • Frederickson J, Butt KR, Morris RM, Daniel C (1997) Combining vermiculture with traditional green waste composting systems. Soil Biol Biochem 29:725–730

    Article  CAS  Google Scholar 

  • Gajalakshmi S (2002) Development of methods for the treatment and reuse of municipal and agricultural solid waste appropriate for rural/suburban households. PhD diss., Pondicherry University

    Google Scholar 

  • Gajalakshmi S, Abbasi SA (2004a) Earthworms and vermicomposting. Indian J Biotechnol 3:486–494

    Google Scholar 

  • Gajalakshmi S, Abbasi SA (2004b) Neem leaves as a source of fertilizer-cum-pesticide vermicompost. Bioresour Technol 92:291–296

    Article  CAS  PubMed  Google Scholar 

  • Gandhi M (1997) Composting of household wastes with and without earthworms. Environ Ecol 15:432–434

    Google Scholar 

  • Garg VK, Gupta R (2011) Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia foetida. Ecotoxicol Environ Saf 74:19–24

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Kaushik P (2005) Vermistabilization of textile mill sludge spiked with poultry drop**s by an epigeic earthworm Eisenia foetida. Bioresour Technol 96:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Ghabbour SI (1973) Earthworm in agriculture: a modern evaluation. Indian Rev Ecol Biol Soc 111:259–271

    Google Scholar 

  • Ghosh M, Chattopadhyay GN, Baral K (1999) Transformation of phosphorus during vermicomposting. Bioresour Technol 69:149–154

    Article  CAS  Google Scholar 

  • Gomez MJF, Nogales R, Plante A, Plaza C, Fernandez JM (2015) Application of a set of complementary techniques to be understand how varying the proportion of two wastes affects humic acid produced by vermicomposting. Waste Manag 35:81–88

    Article  Google Scholar 

  • Goswami L, Sarkar S, Mukherjee S, Das S, Barman S, Raul P, Bhattacharyya P, Mandal NC, Bhattacharya S, Bhattacharya SS (2014) Vermicomposting of tea factory coal ash: metal accumulation and metallothionein response in Eisenia foetida (Savigny) and Lampito mauritti (Kinberg). Bioresour Technol 166:96–102

    Article  CAS  PubMed  Google Scholar 

  • Guest CA, Johnston CT, King JJ, Allenman JJ, Tishmack JK, Norton LD (2001) Chemical characterization of synthetic soil from composting coal combustion and pharmaceutical by-products. J Environ Qual 80:246–253

    Article  Google Scholar 

  • Gunadi B, Susanto SJA, Sosrodjojo PS (1998) Laboratory and large scale indoor condition for culturing two species of redworms (Eisenia anderi and Eisenia foetida) using tea leaf as a food. In: Proceeding of the 6th International Symposium on Earthworm Ecology, Vigo, Spain, 30 Aug–4 Sept 1998

    Google Scholar 

  • Gupta R, Garg VK (2009) Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia foetida. J Hazard Mater 162:430–439

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mutiyar PK, Rawat NK, Saini MS, Garg VK (2007) Development of a water hyacinth based vermi reactor using an epigeic earthworm Eisenia foetida. Bioresour Technol 98:2605–2610

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Miceli FA, Santiago-Borraz J, Molina JAM, Nafate CC, Abud-Archila M, Llaven MAO, Dendooven L (2007) Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour Technol 98:2781–2786

    Article  CAS  PubMed  Google Scholar 

  • Hait S, Tare V (2011) Vermistabilization of primary sewage sludge. Bioresour Technol 102:2812–2820

    Article  CAS  PubMed  Google Scholar 

  • Hanc A, Chandimova Z (2014) Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour Technol 168:240–244

    Article  CAS  PubMed  Google Scholar 

  • Hanc A, Pliva P (2013) Vermicomposting technology as a tool for nutrient recovery from kitchen bio-waste. J Mater Cycles Waste Manag 15:431–439

    Article  CAS  Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag 25:345–352

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Fusheng L, Wei Y, Fu X, Chen X (2014) Effects of earthworm on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetables wastes. Bioresour Technol 170:45–52

    Article  CAS  PubMed  Google Scholar 

  • Ilker UZ, Sonmez S, Tavali IE, Citak S, Uras DS, Citak S (2016) Effect of vermicompost on chemical and biological properties of an alkaline soil with high lime content during celery (Apium graveolens L. var. dulce Mill.) production. Not Bot Horti Agrobot Cluj Napoca 44:280–290

    Article  Google Scholar 

  • Ismail A (1997) Vermicology: the biology of earthworms. Orient Longman Ltd, Hyderabad

    Google Scholar 

  • Ismail SA (1998) The contribution of soil fauna especially the earthworms to soil fertility. In: Proceeding of workshop organic farming, Institute of Research in Soil Biology and Biotechnology, New College, Chennai, pp 1–9

    Google Scholar 

  • Jadia CD, Fulekar MH (2008) Vermicomposting of vegetable waste: a biophysico-chemical process based on hydro-operating bioreactor. Afr J Biotechnol 7:3723–3730

    CAS  Google Scholar 

  • Jordao CP, Pereira MDG, Einloft R, Santana MB, Bellato CR, Vargas de Mello JW (2002) Removal of Cu, Cr, Ni, Zn and Cd from electroplanting wastes and synthetic solutions by vermicompost of cattle manure. J Environ Sci Health A 37:875–892

    Article  Google Scholar 

  • Kang J, Zhang Z, Wang JJ (2011) Influence of humic substances on bioavailability of cu and Zn during sewage sludge composting. Bioresour Technol 102:8022–8026

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S, Brahmachari K, Gangopadhyay A (2013) Studies on agricultural waste management through preparation and utilization of organic manures for maintaining soil quality. Afr J Agric Res 8:6351–6358

    Google Scholar 

  • Kaur A, Singh J, Vig AP, Dhaliwal SS, Rup PJ (2010) Cocomposting with and without Eisenia foetida for conversion of toxic paper mill sludge into soil conditioner. Bioresour Technol 101:8192–8198

    Article  CAS  PubMed  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kaviraj, Sharma S (2003) Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour Technol 90:169–173

    Article  CAS  PubMed  Google Scholar 

  • Kharrazi SM, Younesi H, Abedini-Torghabeh J (2014) Microbial degradation of waste material for nutrients enrichment and heavy metals removal: an integrated composting-vermicomposting process. Int Biodeterior Biodegradation 92:41–48

    Article  CAS  Google Scholar 

  • Khwairakpam M, Bhargava R (2009) Vermitechnology for sewage sludge recycling. J Hazard Mater 161:948–954

    Article  CAS  PubMed  Google Scholar 

  • Kumar DA, Birendra P, Singh RS, Basanti K (2017) Vermicomposting: success story of farmer for revenue and employment generation. Int J AgriSci 9(41):4664–4666

    Google Scholar 

  • Lazcano C, Gomez-Brandon M, Dominguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press, Sydney

    Google Scholar 

  • Lim SL, Wu TY, Sim EYS, Lim PN, Clarke C (2012) Biotransformation of husk into organic fertilizer through vermicomposting. Ecol Eng 41:60–64

    Article  Google Scholar 

  • Lleo T, Albacete E, Barren R, Xavier F, Adriana A, Sanchez A (2013) Home and vermicomposting as sustainable options for biowaste management. J Clean Prod 47:70–76

    Article  CAS  Google Scholar 

  • Manh VH, Wang CH (2014) Vermicompost as an important component in substrate: effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia 8:32–40

    Article  CAS  Google Scholar 

  • Manivannan S, Balamurugan M, Parthasarathi K, Gunasekaran G, Ranganathan LS (2009) Effect of vermicompost on soil fertility and crop productivity-beans (Phaseolus vulgaris). J Environ Biol 30:275–281

    CAS  PubMed  Google Scholar 

  • Manna MC, Jha S, Ghosh PK, Acharya CL (2003) Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresour Technol 88:197–206

    Article  CAS  PubMed  Google Scholar 

  • Masciandaro G, Ceccanti B, Garcia C (2000) “In situ” vermicomposting of biological sludges and impacts on soil quality. Soil Biol Biochem 32:1015–1024. https://doi.org/10.1016/S0038-0717(00)00011-0

    Article  CAS  Google Scholar 

  • Mba CC (1997) Rock phosphate solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol Biochem 29:381–385

    Article  CAS  Google Scholar 

  • Nahrul Hayawin Z, Abdul Khalil HPS, Jawaid M, Hakimi Ibrahim M, Astimar AA (2010) Exploring chemical analysis of vermicompost of various oil palm fibre wastes. Environmentalist 30:273–278

    Article  Google Scholar 

  • Nair J, Sekiozoic V, Anda M (2006) Effect of pre-composting on vermicomposting of kitchen waste. Bioresour Technol 97:2091–2095

    Article  CAS  PubMed  Google Scholar 

  • Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour Technol 76:107–112

    Article  CAS  PubMed  Google Scholar 

  • Ndegwa PM, Thompson SA, Das KC (2000) Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresour Technol 71(1):5–12

    Article  CAS  Google Scholar 

  • Needham AE (1957) Components of nitrogenous excreta in the earthworms Lumbricus terrestris and Eisenia foetida. J Exp Biol 34:425–446

    Article  CAS  Google Scholar 

  • Neklyudov AD, Fedotov GN, Ivankin AN (2008) Intensification of composting processes by aerobic microorganisms: a review. Appl Biochem Microbiol 44:6–18

    Article  CAS  Google Scholar 

  • Nielson RL (1965) Presence of plant growth substances in earthworms demonstrated by paper chromatography and the Went pea test. Nature 208:1113–1114

    Article  Google Scholar 

  • Padmavathiamma PK, Loretta YL, Kumari UR (2008) An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour Technol 99:1672–1681

    Article  CAS  PubMed  Google Scholar 

  • Parkin TB, Berry EC (1994) Nitrogen transformations associated with earthworm casts. Soil Biol Biochem 26:1233–1238

    Article  Google Scholar 

  • Parmanik P (2010) Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicomposting. Waste Manag 30:787–791

    Article  Google Scholar 

  • Parmanik P, Ghosh GK, Ghosal PK, Banik P (2007) Changes in organic C, N, P and K and enzymatic activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour Technol 98:2485–2494

    Article  Google Scholar 

  • Patron JC, Sanchez P, Brown GG, Brossard M, Barois I, Gutierrez C (1999) Phosphorus in soil and Brachiaria decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and phosphorus fertilization. Pedobiologia 43:547–556

    Google Scholar 

  • Peyvast G, Olfati JA, Madeni S, Forghani A (2008) Effect of vermicompost on the growth and yield of spinach (Spinaciaoleracea L.). J Food Agric Environ 6:110–113

    Google Scholar 

  • Ravindran B, Contreras-Ramos SM, Sekaran G (2015) Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecol Eng 74:394–401

    Article  Google Scholar 

  • Reinecke AJ, Viljoen SA, Saayman RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia foetida (Oligochaeta) for vermicomposting in southern Africa in terms of their temperature requirements. Soil Biol Biochem 24:1295–1307

    Article  Google Scholar 

  • Rynk RM, Kamp VD, Willson GG, Singley ME, Richard TL, Kolega JJ, Gouin FR, Laliberty L Jr, Kay D, Murphy DH, Hoitink AJ, Brinton WF (1994) On-farm composting handbook. Northeast Regional Agricultural Engineering Service, Cooperative Extension, New York

    Google Scholar 

  • Saha S, Pradhan K, Sharma S, Alappat BJ (2008) Compost production from municipal solid waste (MSW) employing bioinoculants. Int J Environ Waste Manag 2:572–583

    Article  CAS  Google Scholar 

  • Sahni S, Sarma BK, Singh DP, Singh HB, Singh KP (2008) Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot 27:369–376

    Article  CAS  Google Scholar 

  • Sangwan P, Kaushik CP, Garg VK (2010) Vermicomposting of sugar industry waste (pressmud) mixed with cow dung employing an epigeic earthworm Eisenia foetida. Waste Manag Res 28:71–75

    Article  CAS  PubMed  Google Scholar 

  • Sellami FR, Jarboui S, Hachicha K, Medhioub EA (2008) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour Technol 99:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Sen B, Chandra TS (2007) Chemolytic and solid state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry waste. Bioresour Technol 98:1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour Technol 99:8507–8511

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kaur A, Vig AP, Rup PJ (2010) Role of Eisenia foetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol Environ Saf 73:430–435

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Embrandiri A, Ibrahim MH, Esa N (2011) Management of biomass residues generated from palm oil mill: vermicomposting a sustainable option. Resour Conserv Recycl 55:423–434

    Article  Google Scholar 

  • Singh A, Jain A, Sarma BK, Abhilash PC, Singh HB (2013) Solid waste management of temple floral offerings by vermicomposting using Eisenia foetida. Waste Manag 33:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Singh J, Vig AP (2016) Earthworm as ecological engineers to change the physico-chemical properties of soil: soil vs vermicast. Ecol Eng 90:1–5

    Article  CAS  Google Scholar 

  • Song X, Liu M, Wu D, Qi L, Ye C, Jiao J, Hu F (2014) Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manag 34:1977–1983. https://doi.org/10.1016/j.wasman.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  • Speratti AB, Whalen JK (2008) Carbon dioxide and nitrous oxide fluxes from soil as influenced by anecic and endogeic earthworms. Appl Soil Ecol 38:27–33

    Article  Google Scholar 

  • Suhane RK (2007) Vermicompost. Rajendra Agriculture University, Pusa

    Google Scholar 

  • Suthar S (2010) Recycling of agro-industrial sludge through vermitechnology. Ecol Eng 36:1028–1036

    Article  Google Scholar 

  • Swati A, Hait S (2018) Greenhouse gas emission during composting and vermicomposting of organic wastes—a review. Clean Soil Air Water 46:1700042

    Article  Google Scholar 

  • Tejada M, Garcia-Martinez AM, Parrado J (2009) Effects of a vermicompost composted with beet vinasse on soil properties, soil losses and soil restoration. Catena 77:238–247

    Article  CAS  Google Scholar 

  • Tillinghast EK (1967) Excretory pathways of ammonia and urea in the earthworm Lumbricus terrestris. J Exp Zool 166:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tognetti C, Laos F, Mazzarino MJ, Hernandez MT (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Sci Util 13:6–13

    Article  Google Scholar 

  • Tognetti C, Mazzarino MJ, Laos F (2007) Cocomposting biosolids and municipal organic waste: effects of process management on stabilization and quality. Biol Fertil Soils 43:387–397

    Article  CAS  Google Scholar 

  • Tripathi G, Bhardwaj P (2004) Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresour Technol 92:275–278

    Article  CAS  PubMed  Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1, 3 glucanase, and β-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157:26–32

    Article  PubMed  Google Scholar 

  • Viel M, Sayag D, Andre L (1987) Optimization of agricultural, industrial waste management through in-vessel composting. In: de Bertoldi M (ed) Compost: production, quality and use. Elseiver Applied Science, Essex, pp 230–237

    Google Scholar 

  • Wan JHC, Wong MH (2004) Effects of earthworm activity and P-solublising bacteria on P availability in soil. J Plant Nutr Soil Sci 167:209–213

    Article  CAS  Google Scholar 

  • Wang D, Shi Q, Wang X, Wei M, Hu J, Liu J, Yang F (2010) Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol Fertil Soils 46:689–696

    Article  Google Scholar 

  • Whalen JK, Paustian KH, Parmelee RW (1999) Simulation of growth and flux of carbon and nitrogen through earthworm. Pedobiologia 43:37–546

    Google Scholar 

  • Whalen JK, Parmelee RW, Subler S (2000) Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. Biol Fertil Soils 32:347–352

    Article  CAS  Google Scholar 

  • Yang J, Lv B, Zhang J, **ng M (2014) Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods. Bioresour Technol 154:94–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walia, S.S., Kaur, T. (2024). Influence of Vermicompost on Soil Health. In: Earthworms and Vermicomposting. Springer, Singapore. https://doi.org/10.1007/978-981-99-8953-9_8

Download citation

Publish with us

Policies and ethics

Navigation