Suppression of Artifacts from EEG Recordings Using Computational Intelligence

  • Chapter
  • First Online:
Computational Intelligence in Healthcare Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1132))

  • 97 Accesses

Abstract

Brain–computer interface system will be useful for physically disabled people to analyze and diagnose different health problems. The signal processing module is a major part of the brain–computer interface system. It is divided into four sub-modules notably, pre-processing, feature extraction, feature selection, and classification. EEG captures small amounts of brain activity and is a well-known signal acquisition method, due to its good temporal resolution, cheap cost, and no significant safety concerns. The objective of the EEG-based brain–computer interface system is to extract and translate brain activity into command signals which helps physically disabled people. The EEG recordings are contaminated by a variety of noises generated from different sources. Among these, the eye blinks have the greatest influence on EEG signals because of their high amplitude. This chapter provides a detailed review of the basic principles of various denoising methods, which also succinctly presents a few of the pioneer’s efforts. Further, the comparative analysis is carried out using EMD, AVMD, SWT, and VME-DWT methods for filtering eye blink artifacts. The VME-DWT method is found to perform better than the SWT, AVMD, and EMD methods in terms of signal information retention, which perfectly encapsulates the relevance of our quantitative study. Computational intelligence develops a new approach for identifying and analyzing discriminating characteristics in signals. An EEG-based brain–computer interface system should use computational intelligence to reduce the noises from EEG data proficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vidal, J.J.: Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    Article  Google Scholar 

  2. Guger, C., Harkam, W., Hertnaes, C., Pfurtscheller, G.: Prosthetic control by an EEG-based brain-computer interface (BCI). In: Proceedings of 5th European Conference for the Advancement of Assistive Technology, pp. 3–6 (1999)

    Google Scholar 

  3. Fetz, E.E.: Real-time control of a robotic arm by neuronal ensembles. Nat. Neurosci. 2(7), 583–584 (1999)

    Article  Google Scholar 

  4. Zander, T.O., Kothe, C.: Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J. Neural Eng. 8(2), 025005 (2011)

    Article  Google Scholar 

  5. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  6. Liu, N.H., Chiang, C.Y., Chu, H.C.: Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 13(8), 10273–10286 (2013)

    Article  Google Scholar 

  7. Mutasim, A.K., Tipu, R.S., Bashar, M.R., Islam, M.K., Amin, M.A.: Computational intelligence for pattern recognition in EEG signals. In: Pedrycz, W., Chen, SM. (eds) Computational Intelligence for Pattern Recognition. Studies in Computational Intelligence, vol. 777, pp. 291–320 (2018)

    Google Scholar 

  8. Mao, X., Li, M., Li, W., Niu, L., **an, B., Zeng, M., Chen, G.: Progress in EEG-based brain robot interaction systems. Comput. Intell. Neurosci. 2017, 1742862 (2017)

    Article  Google Scholar 

  9. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  10. Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017)

    Article  Google Scholar 

  11. Baroroh, D.K., Chu, C.H., Wang, L.: Systematic literature review on augmented reality in smart manufacturing: collaboration between human and computational intelligence. J. Manuf. Syst. 61, 696–711 (2021)

    Article  Google Scholar 

  12. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. SIMULATION 76(2), 60–68 (2001)

    Article  Google Scholar 

  13. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  14. Kumari, N., Acharjya, D.P.: Data classification using rough set and bioinspired computing in healthcare applications-an extensive review. Multimedia Tools Appl. 82(9), 13479–13505 (2023)

    Article  Google Scholar 

  15. Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Signal Process. Control 31, 407–418 (2017)

    Article  Google Scholar 

  16. Tatum, W.O., Dworetzky, B.A., Schomer, D.L.: Artifact and recording concepts in EEG. J. Clin. Neurophysiol. 28(3), 252–263 (2011)

    Article  Google Scholar 

  17. Lee, S., Buchsbaum, M.S.: Topographic map** of EEG artifacts. Clin. EEG 18(2), 61–67 (1987)

    Google Scholar 

  18. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller, G.: A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophysiol. 118(1), 98–104 (2007)

    Article  Google Scholar 

  19. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal-state-of-the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015)

    Article  Google Scholar 

  20. Goncharova, I.I., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: EMG contamination of EEG: spectral and topographical characteristics. Clin. Neurophysiol. 114(9), 1580–1593 (2003)

    Article  Google Scholar 

  21. Marque, C., Bisch, C., Dantas, R., Elayoubi, S., Brosse, V., Perot, C.: Adaptive filtering for ECG rejection from surface EMG recordings. J. Electromyogr. Kinesiol. 15(3), 310–315 (2005)

    Article  Google Scholar 

  22. He, P., Wilson, G., Russell, C.: Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med. Biol. Eng. Compu. 42, 407–412 (2004)

    Article  Google Scholar 

  23. Somers, B., Francart, T., Bertrand, A.: A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J. Neural Eng. 15(3), 036007 (2018)

    Article  Google Scholar 

  24. Sweeney, K.T., Ward, T.E., McLoone, S.F.: Artifact removal in physiological signals-Practices and possibilities. IEEE Trans. Inf Technol. Biomed. 16(3), 488–500 (2012)

    Article  Google Scholar 

  25. Hillyard, S.A., Galambos, R.: Eye movement artifact in the CNV. Electroencephalogr. Clin. Neurophysiol. 28(2), 173–182 (1970)

    Article  Google Scholar 

  26. Whitton, J.L., Lue, F., Moldofsky, H.: A spectral method for removing eye movement artifacts from the EEG. Electroencephalogr. Clin. Neurophysiol. 44(6), 735–741 (1978)

    Article  Google Scholar 

  27. Jiang, J.A., Chao, C.F., Chiu, M.J., Lee, R.G., Tseng, C.L., Lin, R.: An automatic analysis method for detecting and eliminating ECG artifacts in EEG. Comput. Biol. Med. 37(11), 1660–1671 (2007)

    Article  Google Scholar 

  28. Hamaneh, M.B., Chitravas, N., Kaiboriboon, K., Lhatoo, S.D., Loparo, K.A.: Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng. 61(6), 1634–1641 (2013)

    Article  Google Scholar 

  29. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  30. Kumar, P.S., Arumuganathan, R., Sivakumar, K., Vimal, C.: An adaptive method to remove ocular artifacts from EEG signals using wavelet transform. J. Appl. Sci. Res. 5(7), 711–745 (2009)

    Google Scholar 

  31. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications. In: Wavelets and Statistics, pp. 281–299, Springer, New York (1995)

    Google Scholar 

  32. Shahbakhti, M., Maugeon, M., Beiramvand, M., Marozas, V.: Low complexity automatic stationary wavelet transform for elimination of eye blinks from EEG. Brain Sci. 9(12), 352 (2019)

    Article  Google Scholar 

  33. Khatun, S., Mahajan, R., Morshed, B.I.: Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG data. IEEE J. Transl. Eng. Health Med. 4, 1–8 (2016)

    Article  Google Scholar 

  34. Casarotto, S., Bianchi, A.M., Cerutti, S., Chiarenza, G.A.: Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children. Clin. Neurophysiol. 115(3), 609–619 (2004)

    Article  Google Scholar 

  35. Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J.: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111(10), 1745–1758 (2000)

    Article  Google Scholar 

  36. Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2), 313–325 (2004)

    Article  Google Scholar 

  37. Frølich, L., Dowding, I.: Removal of muscular artifacts in EEG signals: a comparison of linear decomposition methods. Brain Inf. 5(1), 13–22 (2018)

    Article  Google Scholar 

  38. De Clercq, W., Vergult, A., Vanrumste, B., Van Paesschen, W., Van Huffel, S.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 53(12), 2583–2587 (2006)

    Article  Google Scholar 

  39. Patel, R., Janawadkar, M.P., Sengottuvel, S., Gireesan, K., Radhakrishnan, T.S.: Suppression of eye-blink associated artifact using single channel EEG data by combining cross-correlation with empirical mode decomposition. IEEE Sens. J. 16(18), 6947–6954 (2016)

    Article  Google Scholar 

  40. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  41. Patel, R., Gireesan, K., Sengottuvel, S., Janawadkar, M.P., Radhakrishnan, T.S.: Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J. Med. Biol. Eng. 37(2), 201–208 (2017)

    Article  Google Scholar 

  42. Chen, X., Xu, X., Liu, A., McKeown, M.J., Wang, Z.J.: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans. Instrum. Meas. 67(2), 359–370 (2017)

    Article  Google Scholar 

  43. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2013)

    Article  MathSciNet  Google Scholar 

  44. Nazari, M., Sakhaei, S.M.: Variational mode extraction: a new efficient method to derive respiratory signals from ECG. IEEE J. Biomed. Health Inform. 22(4), 1059–1067 (2017)

    Article  Google Scholar 

  45. Shahbakhti, M., Beiramvand, M., Nazari, M., Broniec-Wójcik, A., Augustyniak, P., Rodrigues, A.S., Wierzchon, M., Marozas, V.: VME-DWT: an efficient algorithm for detection and elimination of eye blink from short segments of single EEG channel. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 408–417 (2021)

    Article  Google Scholar 

  46. Dora, C., Biswal, P.K.: An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD. Biocybern. Biomed. Engin. 40(1), 148–161 (2020)

    Google Scholar 

  47. Terzano, M.G., Parrino, L., Smerieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., Hirshkowitze, M., Mahowaldf, M., Moldofskyg, H., Rosah, A., Thomas, R., Walters, A.: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 3(2), 187–199 (2002)

    Article  Google Scholar 

  48. Maddirala, A.K., Veluvolu, K.C.: SSA with CWT and k-means for eye-blink artifact removal from single-channel EEG signals. Sensors 22(3), 931 (2022)

    Article  Google Scholar 

  49. Alyasseri, Z.A.A., Khader, A.T., Al-Betar, M.A., Abasi, A.K., Makhadmeh, S.N.: EEG signals denoising using optimal wavelet transform hybridized with efficient metaheuristic methods. IEEE Access 8, 10584–10605 (2019)

    Article  Google Scholar 

  50. Phadikar, S., Sinha, N., Ghosh, R.: Automatic eyeblink artifact removal from EEG signal using wavelet transform with heuristically optimized threshold. IEEE J. Biomed. Health Inform. 25(2), 475–484 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malaya Kumar Hota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silpa, B., Hota, M.K., Mokthar, N. (2024). Suppression of Artifacts from EEG Recordings Using Computational Intelligence. In: Acharjya, D.P., Ma, K. (eds) Computational Intelligence in Healthcare Informatics. Studies in Computational Intelligence, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-99-8853-2_17

Download citation

Publish with us

Policies and ethics

Navigation