Pseudomonas aeruginosa Virulence Factors and Biofilm Components: Synthesis, Structure, Function and Inhibitors

  • Chapter
  • First Online:
ESKAPE Pathogens

Abstract

Pseudomonas aeruginosa is a versatile opportunistic bacterium reasons for hospital-acquired infections specifically to the patients suffering from cystic fibrosis, burns, wounds and also immunocompromised individuals. Diverse resistance mechanisms possessed by the bacterium make them to overcome the effect of various antimicrobial agents. P. aeruginosa possess a plenty of virulence determinants, specifically biofilm, and triggers resistance, which is controlled by cellular communication pathway called quorum sensing (QS). A deep understanding about the pathogenic determinants such as virulence factor and biofilm, and also the interaction with the host, makes the development of therapeutic approaches easier. This chapter gives an insight into the synthesis, structure, function and inhibitors of virulence phenotypes of Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahire JJ, Hattingh M, Neveling DP, Dicks LM (2016) Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS One 11(3):e0152755

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiello D, Williams JD, Majgier-Baranowska H, Patel I, Peet NP, Huang J, Lory S, Bowlin TL, Moir DT (2010) Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III secretion. Antimicrob Agents Chemother 54(5):1988–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    Article  CAS  PubMed  Google Scholar 

  • Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I (2016) Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 6(1):36761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin SA, Green DH, Küpper FC, Carrano CJ (2009) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48(23):11451–11458

    Article  CAS  PubMed  Google Scholar 

  • Arya G, Kumari RM, Sharma N, Chatterjee S, Gupta N, Kumar A, Nimesh S (2018) Evaluation of antibiofilm and catalytic activity of biogenic silver nanoparticles synthesized from Acacia nilotica leaf extract. Adv Nat Sci Nanosci Nanotechnol 9(4):045003

    Article  CAS  Google Scholar 

  • Azam MW, Khan AU (2019) Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today 24(1):350–359

    Article  PubMed  Google Scholar 

  • Balducci E, Papi F, Capialbi DE, Del Bino L (2023) Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int J Mol Sci 24(4):4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E, Daniel R (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6(10):e26278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K (2013) The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 9(8):e1003526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleves S, Viarre V, Salacha R, Michel GP, Filloux A, Voulhoux R (2010) Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol 300(8):534–543

    Article  CAS  PubMed  Google Scholar 

  • Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa—mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640

    Article  PubMed  Google Scholar 

  • Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A (2021) Pseudomonas flagella: generalities and specificities. Int J Mol Sci 22(7):3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake pathway. Environ Microbiol 11(5):1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520

    Article  CAS  PubMed  Google Scholar 

  • Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlap** roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73(4):622–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camberlein V, Jézéquel G, Haupenthal J, Hirsch AK (2022) The structures and binding modes of small-molecule inhibitors of Pseudomonas aeruginosa elastase LasB. Antibiotics 11(8):1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadha J, Harjai K, Chhibber S (2022) Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 15(6):1695–1718

    Article  PubMed  Google Scholar 

  • Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A (2020) Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob 19:1–17

    Article  Google Scholar 

  • Chung J, Eisha S, Park S, Morris AJ, Martin I (2023) How three self-secreted biofilm exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and alginate, can each be exploited for antibiotic adjuvant effects in cystic fibrosis lung infection. Int J Mol Sci 24(10):8709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol 10:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 3:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daboor SM, Raudonis R, Cohen A, Rohde JR, Cheng Z (2019) Marine bacteria, a source for alginolytic enzyme to disrupt Pseudomonas aeruginosa biofilms. Mar Drugs 17(5):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darabpour E, Kashef N, Mashayekhan S (2016) Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study. Photodiagn Photodyn Ther 14:211–217

    Article  CAS  Google Scholar 

  • Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50(3):809–824

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Arora SK, Ramphal R (2004) The flagellar system of Pseudomonas aeruginosa. In: Ramos JL (ed) Pseudomonas. Springer, Boston, MA, pp 675–698

    Chapter  Google Scholar 

  • Dean SN, Bishop BM, Van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Mar Cendra M, Torrents E (2021) Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 49:107734

    Article  Google Scholar 

  • Dragoš A, Kovács ÁT (2017) The peculiar functions of the bacterial extracellular matrix. Trends Microbiol 25(4):257–266

    Article  PubMed  Google Scholar 

  • Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16(7):1961–1981

    Article  CAS  PubMed  Google Scholar 

  • Filloux A (2011) Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol 2:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Galdino ACM, Branquinha MH, Santos ALS, Viganor L (2017) Pseudomonas aeruginosa and its arsenal of proteases: weapons to battle the host. In: Chakraborti S, Dhalla N (eds) Pathophysiological aspects of proteases. Springer, Singapore, pp 381–397

    Chapter  Google Scholar 

  • Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA (2020) Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. J Clin Med 9(12):3800

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MT, Zhang Q, Codée JD, Klassen JS (2022) Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Nat Commun 13(1):7631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Saha I, Dey A, Lahiri D, Nag M, Sarkar T, Pati S, Rebezov M, Shariati MA, Thiruvengadam M, Ray RR (2022) Natural compounds underpinning the genetic regulation of biofilm formation: an overview. S Afr J Bot 151:92–106

    Article  CAS  Google Scholar 

  • Guillon A, Fouquenet D, Morello E, Henry C, Georgeault S, Si-Tahar M, Hervé V (2018) Treatment of Pseudomonas aeruginosa biofilm present in endotracheal tubes by poly-L-lysine. Antimicrob Agents Chemother 62(11):10–1128

    Article  Google Scholar 

  • Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59(3):253–268

    Article  CAS  PubMed  Google Scholar 

  • Häußler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6(6):546–551

    Article  PubMed  Google Scholar 

  • Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2, pp 383–395

    Google Scholar 

  • Horna G, Ruiz J (2021) Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 246:126719

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Huang YY, Wang Y, Wang X, Hamblin MR (2018) Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol 9:1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang W, Yoon SS (2019) Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Sci Rep 9(1):487

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Das CR (2017) Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci 190:21–28

    Article  CAS  PubMed  Google Scholar 

  • Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM (2023) Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 107(4):1019–1038

    Article  CAS  PubMed  Google Scholar 

  • Jurado-Martín I, Sainz-Mejías M, McClean S (2021) Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 22(6):3128

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Wadman MW, Dohm MT, Czyzewski AM, Spormann AM, Barron AE (2011) Antimicrobial peptoids are effective against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55(6):3054–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM (2019) Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs 17(4):208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55(2):368–380

    Article  CAS  PubMed  Google Scholar 

  • Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M (2017) Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 168(3):194–207

    Article  PubMed  Google Scholar 

  • Langendonk RF, Neill DR, Fothergill JL (2021) The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol 11:665759

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Choi DS, Kim KP, Gho YS (2008) Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27(6):535–555

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yuan X, Wei J, Zhang X, Cheng G, Wang ZA, Du Y (2019) Synthesis and evaluation of a chitosan oligosaccharide-streptomycin conjugate against Pseudomonas aeruginosa biofilms. Mar Drugs 17(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao C, Huang X, Wang Q, Yao D, Lu W (2022) Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front Cell Infect Microbiol 12:926758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ (2012) Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol 14(8):1995–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra S, Limoli DH, English AE, Parsek MR, Wozniak DJ (2018) Mixed communities of mucoid and nonmucoid Pseudomonas aeruginosa exhibit enhanced resistance to host antimicrobials. MBio 9(2)

    Google Scholar 

  • Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13(7):1666–1681

    Article  CAS  PubMed  Google Scholar 

  • Mion S, Rémy B, Plener L, Brégeon F, Chabrière E, Daudé D (2019) Quorum quenching lactonase strengthens bacteriophage and antibiotic arsenal against Pseudomonas aeruginosa clinical isolates. Front Microbiol 10:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Mislin GL, Schalk IJ (2014) Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6(3):408–420

    Article  CAS  PubMed  Google Scholar 

  • Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris AJ, Jackson L, Yau YCW, Reichhardt C, Beaudoin T, Uwumarenogie S, Guttman KM, Lynne Howell P, Parsek MR, Hoffman LR, Nguyen D (2021) The role of Psl in the failure to eradicate Pseudomonas aeruginosa biofilms in children with cystic fibrosis. npj Biofilms Microbiomes 7(1):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, Lai R (2019) The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci 116(52):26516–26522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal Jimenez P, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76(1):46–65

    Article  PubMed Central  Google Scholar 

  • Orlandi VT, Rybtke M, Caruso E, Banfi S, Tolker-Nielsen T, Barbieri P (2014) Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1. Biofouling 30(8):883–891

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192

    Article  CAS  PubMed  Google Scholar 

  • Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR (2019) The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 10(1):2183

    Article  PubMed  PubMed Central  Google Scholar 

  • Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297(5):277–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichhardt C, Parsek MR (2019) Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Front Microbiol 10:677

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds D, Kollef M (2021) The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81(18):2117–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakharkar MK, Jayaraman P, Soe WM, Chow VT, Sing LC, Sakharkar KR (2009) In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J Microbiol Immunol Infect 42(5):364–370

    CAS  PubMed  Google Scholar 

  • Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Silva E, Teixeira JA, Pereira MO, Rocha CM, Sousa AM (2023) Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine 119:154973

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Paknikar KM, Rajwade J (2019) Gene expression is influenced due to ‘nano’ and ‘ionic’ copper in pre-formed Pseudomonas aeruginosa biofilms. Environ Res 175:367–375

    Article  CAS  PubMed  Google Scholar 

  • Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB (2018) Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol 63:413–432

    Article  CAS  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Thi MTT, Wibowo D, Rehm BH (2020) Pseudomonas aeruginosa biofilms. Int J Mol Sci 21(22):8671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS (2022) Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens 11(3):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetrivel A, Ramasamy M, Vetrivel P, Natchimuthu S, Arunachalam S, Kim GS, Murugesan R (2021) Pseudomonas aeruginosa biofilm formation and its control. Biologics 1(3):312–336

    Article  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14(10):20983–21005

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH (2023) Pseudomonas aeruginosa cytotoxins: mechanisms of cytotoxicity and impact on inflammatory responses. Cells 12(1):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav J, Kumari RM, Verma V, Nimesh S (2021) Recent development in therapeutic strategies targeting Pseudomonas aeruginosa biofilms—a review. Mater Today Proc 46:2359–2373

    Article  CAS  Google Scholar 

  • Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, Liu X, Shen X, Qian PY (2015) Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol 5:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lu Z, Dai X, Wei X, Yu Y, Chen X, Zhang X, Li C (2018) Glycomimetic-conjugated photosensitizer for specific Pseudomonas aeruginosa recognition and targeted photodynamic therapy. Bioconjug Chem 29(9):3222–3230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, M.S., Salim, S.A., Forgia, N., Busi, S. (2024). Pseudomonas aeruginosa Virulence Factors and Biofilm Components: Synthesis, Structure, Function and Inhibitors. In: Busi, S., Prasad, R. (eds) ESKAPE Pathogens. Springer, Singapore. https://doi.org/10.1007/978-981-99-8799-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8799-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8798-6

  • Online ISBN: 978-981-99-8799-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation