TPNet: Enhancing Weakly Supervised Polyp Frame Detection with Temporal Encoder and Prototype-Based Memory Bank

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14436))

Included in the following conference series:

  • 517 Accesses

Abstract

Polyp detection plays a crucial role in the early prevention of colorectal cancer. The availability of large-scale polyp video datasets and video-level annotations has spurred research efforts to formulate polyp detection as a weakly-supervised anomaly detection task, which leverages video-level labeled training data for detecting frame-level polyps. However, few studies have investigated the impact of specific properties within polyp videos, including temporal dynamics, ambiguity, and complex noise. In this work, we propose TPNet, a novel framework that addresses several challenges posed by colonoscopy videos, for weakly-supervised polyp frame detection. Specifically, we design a Temporal Encoder that effectively capturing the temporal dynamics and intricate patterns within polyp video segments to foster accuracy. Additionally, we introduce a Prototype-based Memory Bank that facilitates the storage and retrieval of significant discriminative information, which enhance the sensitivity and robustness in ambiguous and complicated conditions. Experiments conducted on one of the largest and most challenging colonoscopy datasets demonstrate that our proposed TPNet achieves state-of-the-art performance, surpassing the latest cutting-edge method with 6.19% in average precision (AP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S.B., Han, D.S., Bae, J.H., Byun, T.J., Kim, J.P., Eun, C.S.: The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6(1), 64 (2012)

    Article  Google Scholar 

  2. Ali, S., Dmitrieva, M., Ghatwary, N., Bano, S., Polat, G., Temizel, A., Krenzer, A., Hekalo, A., Guo, Y.B., Matuszewski, B., et al.: Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Med. Image Anal. 70, 102002 (2021)

    Article  Google Scholar 

  3. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020)

    Article  Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  5. Feng, J.C., Hong, F.T., Zheng, W.S.: Mist: multiple instance self-training framework for video anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14009–14018 (2021)

    Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  7. Itoh, H., Misawa, M., Mori, Y., Kudo, S.E., Oda, M., Mori, K.: Positive-gradient-weighted object activation map**: visual explanation of object detector towards precise colorectal-polyp localisation. Int. J. Comput. Assist. Radiol. Surg. 17(11), 2051–2063 (2022)

    Article  Google Scholar 

  8. Ji, G.-P., et al.: Progressively normalized self-attention network for video polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 142–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_14

    Chapter  Google Scholar 

  9. Ji, G.P., et al.: Video polyp segmentation: a deep learning perspective. Mach. Intell. Res. 19, 1–19 (2022). https://doi.org/10.1007/s11633-022-1371-y

    Article  Google Scholar 

  10. Kim, Y., Kim, M., Kim, G.: Memorization precedes generation: learning unsupervised GANs with memory networks. ar**v preprint ar**v:1803.01500 (2018)

  11. Ladabaum, U., Dominitz, J.A., Kahi, C., Schoen, R.E.: Strategies for colorectal cancer screening. Gastroenterology 158(2), 418–432 (2020)

    Article  Google Scholar 

  12. Leufkens, A., Van Oijen, M., Vleggaar, F., Siersema, P.: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(05), 470–475 (2012)

    Article  Google Scholar 

  13. Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13588–13597 (2021)

    Google Scholar 

  14. Ma, Y., Chen, X., Cheng, K., Li, Y., Sun, B.: LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 387–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_37

    Chapter  Google Scholar 

  15. Mathur, P., et al.: Cancer statistics, 2020: report from national cancer registry programme, India. JCO Glob. Oncol. 6, 1063–1075 (2020)

    Article  Google Scholar 

  16. Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021)

    Google Scholar 

  17. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

    Google Scholar 

  18. Podlasek, J., Heesch, M., Podlasek, R., Kilisiński, W., Filip, R.: Real-time deep learning-based colorectal polyp localization on clinical video footage achievable with a wide array of hardware configurations. Endosc. Int. Open 9(05), E741–E748 (2021)

    Article  Google Scholar 

  19. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850. PMLR (2016)

    Google Scholar 

  20. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR, pp. 6479–6488 (2018)

    Google Scholar 

  21. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4975–4986 (2021)

    Google Scholar 

  22. Tian, Y., et al.: Contrastive transformer-based multiple instance learning for weakly supervised polyp frame detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, vol. 13433, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_9

  23. Wan, B., Fang, Y., **a, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  24. Wu, L., Hu, Z., Ji, Y., Luo, P., Zhang, S.: Multi-frame collaboration for effective endoscopic video polyp detection via spatial-temporal feature transformation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 302–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_29

    Chapter  Google Scholar 

  25. Xu, J., Zhao, R., Yu, Y., Zhang, Q., Bian, X., Wang, J., Ge, Z., Qian, D.: Real-time automatic polyp detection in colonoscopy using feature enhancement module and spatiotemporal similarity correlation unit. Biomed. Signal Process. Control 66, 102503 (2021)

    Article  Google Scholar 

  26. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXII. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  27. Zhao, X., et al.: Semi-supervised spatial temporal attention network for video polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, vol. 13434, pp. 456–466 Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_44

  28. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1237–1246 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 62276221), the Natural Science Foundation of Fujian Province of China (No. 2022J01002), and the Science and Technology Plan Project of **amen (No. 3502Z20221025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, J., Luo, Z., Tian, C., Li, S. (2024). TPNet: Enhancing Weakly Supervised Polyp Frame Detection with Temporal Encoder and Prototype-Based Memory Bank. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation