Unsupervised Domain Adaptation forĀ Optical Flow Estimation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14427))

Included in the following conference series:

  • 553 Accesses

Abstract

In recent years, we have witnessed significant breakthroughs of optical flow estimation with the thriving of deep learning. The performance of the unsupervised method is unsatisfactory due to it is lack of effective supervision. The supervised approaches typically assume that the training and test data are drawn from the same distribution, which is not always held in practice. Such a domain shift problem are common exists in optical flow estimation and makes a significant performance drop. In this work, we address these challenge scenarios and aim to improve the model generalization ability of the cross-domain optical flow estimation model. Thus we propose a novel framework to tackle the domain shift problem in optical flow estimation. To be specific, we first design a domain adaptive autoencoder to transform the source domain and the target domain image into a common intermediate domain. We align the distribution between the source and target domain in the latent space by a discriminator. And the optical flow estimation module adopts the images in the intermediate domain to predict the optical flow. Our model can be trained in an end-to-end manner and can be a plug and play module to the existing optical flow estimation model. We conduct extensive experiments on the domain adaptation scenarios including Virtual KITTI to KITTI and FlyingThing3D to MPI-Sintel, the experimental results show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behl, A., Hosseini Jafari, O., Karthik Mustikovela, S., Abu Alhaija, H., Rother, C., Geiger, A.: Bounding boxes, segmentations and object coordinates: how important is recognition for 3D scene flow estimation in autonomous driving scenarios? In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2574ā€“2583 (2017)

    Google ScholarĀ 

  2. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611ā€“625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    ChapterĀ  Google ScholarĀ 

  3. Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2 (2020)

    Google ScholarĀ 

  4. Chen, J., Wu, X., Duan, L., Gao, S.: Domain adversarial reinforcement learning for partial domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. (2020)

    Google ScholarĀ 

  5. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4091ā€“4101 (2021)

    Google ScholarĀ 

  6. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758ā€“2766 (2015)

    Google ScholarĀ 

  7. Duan, L., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 465ā€“479 (2012)

    ArticleĀ  Google ScholarĀ 

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) (2011)

    Google ScholarĀ 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354ā€“3361. IEEE (2012)

    Google ScholarĀ 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google ScholarĀ 

  11. Hoffman, J., et al.: CYCADA: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989ā€“1998. PMLR (2018)

    Google ScholarĀ 

  12. Hsu, H.K., et al.: Progressive domain adaptation for object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 749ā€“757 (2020)

    Google ScholarĀ 

  13. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462ā€“2470 (2017)

    Google ScholarĀ 

  14. Im, W., Kim, T.-K., Yoon, S.-E.: Unsupervised learning of optical flow with deep feature similarity. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 172ā€“188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_11

    ChapterĀ  Google ScholarĀ 

  15. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000ā€“9008 (2018)

    Google ScholarĀ 

  16. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. ar**v preprint ar**v:2104.02409 (2021)

  17. Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.: What matters in unsupervised optical flow. ar**v preprint ar**v:2006.04902 1(2), 3 (2020)

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097ā€“1105 (2012)

    Google ScholarĀ 

  19. Liu, L., et al.: Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6489ā€“6498 (2020)

    Google ScholarĀ 

  20. Liu, P., King, I., Lyu, M.R., Xu, J.: DDFlow: learning optical flow with unlabeled data distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8770ā€“8777 (2019)

    Google ScholarĀ 

  21. Liu, P., Lyu, M., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4571ā€“4580 (2019)

    Google ScholarĀ 

  22. Liu, Y., Deng, J., Gao, X., Li, W., Duan, L.: BAPA-Net: boundary adaptation and prototype alignment for cross-domain semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8801ā€“8811 (2021)

    Google ScholarĀ 

  23. Luo, K., Wang, C., Liu, S., Fan, H., Wang, J., Sun, J.: UPFlow: upsampling pyramid for unsupervised optical flow learning. ar**v preprint ar**v:2012.00212 (2020)

  24. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040ā€“4048 (2016)

    Google ScholarĀ 

  25. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google ScholarĀ 

  26. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3061ā€“3070 (2015)

    Google ScholarĀ 

  27. Poggi, M., Aleotti, F., Mattoccia, S.: Sensor-guided optical flow. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7908ā€“7918 (2021)

    Google ScholarĀ 

  28. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google ScholarĀ 

  29. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. ar**, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934ā€“8943 (2018)

    Google ScholarĀ 

  30. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402ā€“419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    ChapterĀ  Google ScholarĀ 

  31. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472ā€“7481 (2018)

    Google ScholarĀ 

  32. Wang, Y., Yang, Y., Yang, Z., Zhao, L., Wang, P., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4884ā€“4893 (2018)

    Google ScholarĀ 

  33. Wang, Z., Du, B., Shi, Q., Tu, W.: Domain adaptation with discriminative distribution and manifold embedding for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(7), 1155ā€“1159 (2019)

    ArticleĀ  Google ScholarĀ 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600ā€“612 (2004)

    ArticleĀ  Google ScholarĀ 

  35. Zhang, F., Woodford, O.J., Prisacariu, V.A., Torr, P.H.: Separable flow: learning motion cost volumes for optical flow estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10807ā€“10817 (2021)

    Google ScholarĀ 

  36. Zhao, S., Li, B., Xu, P., Keutzer, K.: Multi-source domain adaptation in the deep learning era: a systematic survey. ar**v preprint ar**v:2002.12169 (2020)

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223ā€“2232 (2017)

    Google ScholarĀ 

Download references

Acknowledgements

This work is supported by the Major Project for New Generation of AI under Grant No. 2018AAA0100400, National Natural Science Foundation of China No. 82121003, and Shenzhen Research Program No. JSGG20210802153537009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, J., Deng, J., Zhang, Y., Wan, S., Duan, L. (2024). Unsupervised Domain Adaptation forĀ Optical Flow Estimation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14427. Springer, Singapore. https://doi.org/10.1007/978-981-99-8435-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8435-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8434-3

  • Online ISBN: 978-981-99-8435-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation