Biodegradation of Microplastic Using Bacterial Cultures

  • Chapter
  • First Online:
Microplastic Pollution

Abstract

Plastics are large molecular-weight organic polymers, commonly derived from different petrochemicals. There is a considerable increase in the global demand for plastics because of the ease of processing into various products used for packaging, handling, and storage of materials. There are many uses for various plastics such as polyolefin, polyester, polyvinyl chloride (PVC), polystyrene (PS), polyamide, ethylene vinyl alcohol, polyethylene (PE), polycarbonate, polypropylene (PP), polyurethane (PU), and polyethylene terephthalate (PET) in daily living. Microplastics are tiny plastic particles defined as plastics less than 5 mm in diameter. They are of two types, the first being primary microplastics which are tiny particles intended for commercial use in cosmetic products, and microfibers shed from textiles and fishing nets. Secondary microplastics are particles generated by the breakdown of bigger plastic items exposed to abiotic factors such as the sun’s rays and ocean waves. However, considering the rate of degradation or non-biodegradability of these organic polymers, they turn out to be a major environmental threat. They are highly stable and therefore do not enter into the degradation cycle of the biosphere easily. Degradation of plastics using physical and chemical methods may lead to innumerable environmental hazards. Microorganisms break down microplastics by producing intracellular or extracellular enzymes that turn long-chain polymers into oligomers and monomers that are then used by microbial cells. Some recent studies show that Pseudomonas sp. Ideonella sakaiensis, Klebsiella pneumoniae, Bacillus sp., Paenibacillus sp., Bacillus siamensis, Desulfotomaculum nigrificans, Alcaligenes sp. are some of the predominant bacterial species capable of degrading plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Adane L, Muleta D (2011) Survey on the usage of plastic bags, their disposal and adverse impacts on environment: a case study in Jimma City, Southwestern Ethiopia. J Toxicol Environ Health Sci 3:234–248

    Google Scholar 

  • Allen-Gil G, Wabnitz CC, Beck MW et al (2020) From waste to wealth: unlocking economic benefits from a Sustainable Ocean Economy. World Resources Institute, Washington, DC

    Google Scholar 

  • Andrady AL (2015) Microplastics in the marine environment. Mar Pollut Bull 97(1–2):122–123

    Google Scholar 

  • Andrady AL (2017) The plastic in microplastics: a review. Mar Pollut Bull 119(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37(5):487–496

    Article  CAS  Google Scholar 

  • Atthoff B, Hilborn J (2007) Protein adsorption onto polyester surfaces: is there a need for surface activation? J Biomed Mater Res B Appl Biomater 80B(1):121–130

    Article  CAS  Google Scholar 

  • Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 115(19):E4350–E4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11(8):1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme S, Cuer A, Delort A, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Prog Polym Sci 81:441–452

    CAS  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179

    Article  CAS  PubMed  Google Scholar 

  • Carraher CE (2000) Introduction to polymer chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on microbial degradation of plastics: an overview. J Environ Manag 217:56–73

    Google Scholar 

  • Dahal P (2023) Ideonella sakaiensis (plastic-eating bacteria)—an overview microbe notes. https://microbenotes.com/ideonella-sakaiensis-plastic-eating-bacteria/. Accessed 15 July 2023

  • Dang TC, Nguyen DT, Thai H, Nguyen TC, Hien Tran TT, Le VH, Nguyen VH, Tran XB, Thao Pham TP, Nguyen TG, Nguyen QT (2018) Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Adv Nat Sci Nanosci Nanotechnol 9(1):015014

    Article  Google Scholar 

  • Danko AS, Luo M, Bagwell CE, Brigmon RL, Freedman DL (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70(10):6092–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54(1):7–18

    Article  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. In: Takada H, Karapanagioti HK (eds) Hazardous chemicals associated with plastics in the marine environment. Springer, Cham, pp 71–92

    Chapter  Google Scholar 

  • Galloway TS (2015) Micro-and nano-plastics and human health. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 343–366

    Chapter  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355

    Article  CAS  Google Scholar 

  • Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, Leslie HA, Maffini M, Slunge D, Trasande L, Warhurst AM (2019) Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ 651:3253–3268

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Zhang Y (2020) Advances in microbial degradation of microplastics. Engineering 6(8):817–824

    Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98(5):1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Article  CAS  PubMed  Google Scholar 

  • Hill DJ, McGrail PT (eds) (2003) Condensation polymers: synthesis, reactions, and applications. Springer Science & Business Media

    Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B Biol Sci 364(1526):2115–2126

    Article  CAS  Google Scholar 

  • Howard GT, Mackie RI, Cann IK, Ohene-Adjei S, Aboudehen KS, Duos BG, Childers GW (2007) Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J Appl Microbiol 103(6):2074–2083

    Article  CAS  PubMed  Google Scholar 

  • Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, Barlow DE, Russell JN Jr, Crookes-Goodson WJ (2016) Carbon catabolite repression and Impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Appl Environ Microbiol 82(20):6080–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain PK, Bajpai V (2012) Biotechnology of bioremediation—a review. Int J Environ Sci 3:535–549

    CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  PubMed  Google Scholar 

  • Jeon HJ, Kim MN (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeterior Biodegrad 103:141–146

    Article  CAS  Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci Int J 16(4):149–158

    Article  CAS  Google Scholar 

  • Lee K, Tanabe S, Koh C (2001) Contamination of polychlorinated biphenyls (PCBs) in sediments from Kyeonggi Bay and nearby areas, Korea. Mar Pollut Bull 42:273–279

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53(4–5):263–272. https://doi.org/10.2166/wst.2006.131;2006

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, ** T, Zou T, Xu L, ** B, Xu D, He J, **ong L, Tang C, Peng J, Zhou Y (2022) Current progress on plastic/microplastic degradation: fact influences and mechanism. Environ Pollut 304:119159

    Article  CAS  PubMed  Google Scholar 

  • Menczel JD, Prime RB (eds) (2009) Thermal analysis of polymers: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Miller R (2005) The landscape for biopolymers in packaging. In: Miller-Klein associates report. Summary and full report available from the National non-Food Crops Centre. National Non-Food Crops Centre, Heslington

    Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  • Müller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) DBM. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26(17):1400–1405

    Article  Google Scholar 

  • Mulligan CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30(4):587–601

    Article  CAS  PubMed  Google Scholar 

  • Muralisankar T, Arthanareeswari M (2018) Polyethylene terephthalate (PET)-a review on manufacturing, recycling process and environmental impacts. In: Sanghi R, Singh V (eds) Green chemistry for environmental remediation. Wiley, New York, pp 307–321

    Google Scholar 

  • Nag M, Lahiri D, Dutta B, Jadav G, Ray RR (2021) Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ Sci Pollut Res 28:41365–41379. https://doi.org/10.1007/s11356-021-13704-0

    Article  CAS  Google Scholar 

  • Ndahebwa Muhonja C, Magoma G, Imbuga M, Makonde HM (2018) Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. Int J Microbiol 2018:1–10. https://doi.org/10.1155/2018/4167845

    Article  CAS  Google Scholar 

  • Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY (2009) Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 157(3):763–771. https://doi.org/10.1016/j.envpol.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  • O'Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60(12):2279–2283

    Article  CAS  PubMed  Google Scholar 

  • Odian G (2004) Principles of polymerization. Wiley, New York

    Book  Google Scholar 

  • Palm GJ, Reisky L, Böttcher D, Müller H, Michels EA, Walczak MC, Berndt L, Weiss MS, Bornscheuer UT, Weber G (2019) Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat Commun 10(1):1717

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Arora NK (2020) Prof. Ananda Mohan Chakrabarty: the superbug superhero! Environ Sustain 3(3):333–335. https://doi.org/10.1007/s42398-020-00117-x

    Article  Google Scholar 

  • Perz V, Baumschlager A, Bleymaier K, Zitzenbacher S, Hromic A, Steinkellner G, Pairitsch A, Łyskowski A, Gruber K, Sinkel C, Küper U (2016) Hydrolysis of synthetic polyesters by Clostridium botulinum esterases. Biotechnol Bioeng 113(5):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Pu W, Cui C, Guo C, Wu ZL (2018) Characterization of two styrene monooxygenases from marine microbes. Enzyme Microb Technol 112:29–34

    Article  CAS  PubMed  Google Scholar 

  • Rathje WL, Reilly MD, Hughes WW (1985) Household garbage and the role of packaging—the United States/Mexico City household refuse comparison. Solid Waste Council of the Paper Industry Publishing, p 116

    Google Scholar 

  • Rochman CM (2018) Microplastics research—from sink to source. Science 360(6384):28–29

    Article  CAS  PubMed  Google Scholar 

  • Sacharow S, Griffin RC (1980) Principles of food packaging, 2nd edn. AVI Publishing Company, Westport

    Google Scholar 

  • Saminathan P, Sripriya A, Nalini K, Sivakumar T, Thangapandian V (2014) Biodegradation of plastics by Pseudomonas putida isolated from garden soil samples. J Adv Bot Zool 1(3):34–38

    Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  PubMed  Google Scholar 

  • Sowmya HV, Ramalingappa MK, Thippeswamy B (2014) Biodegradation of polyethylene by Bacillus cereus. Adv Polym Sci Technol Int J 4(2):28–32

    Google Scholar 

  • Sperling LH (2006) Introduction to physical polymer science. Wiley, New York

    Google Scholar 

  • Stevens MP (2009) Polymer chemistry: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • Stilwell EJ, Canty RC, Kopf PW, Montrone AM (1991) Packaging for the environment: a partnership for progress. American Management Assn. (Amacom) Publishing, New York

    Google Scholar 

  • Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int Biodeterior Biodegrad 61(3):203–213

    Article  CAS  Google Scholar 

  • Sugimoto M, Tanabe M, Hataya M, Enokibara S, Duine JA, Kawai F (2001) The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183(22):6694–6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations Environment Programme (2018) Single-use plastics: a roadmap for sustainability. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_sustainability.pdf?sequence=1&isAllowed=y. Accessed 18 June 2023

  • United States Environmental Protection Agency (2021) Plastics: material-specific data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data. Accessed 18 June 2023

  • Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Proced Technol 24:232–239

    Article  Google Scholar 

  • Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1–9

    Article  Google Scholar 

  • Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y (2019) Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res 165:114979

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yang J, Jiang L (2016) Comment on “A bacterium that degrades and assimilates poly (ethylene terephthalate)”. Science 353(6301):759

    Article  CAS  PubMed  Google Scholar 

  • Zubris KA, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Orr, I.G., et al., Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. 2004. 65(1): p. 97-104.

    Google Scholar 

Download references

Acknowledgments

The authors place on records their gratitude towards the editors, especially Dr. Mohd. Shahnawaz, for his insightful feedback and guidance, which helped to refine the structure and content of the work, and ensured its overall coherence and quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, L., Manoj, S.E., Sunil, L., Raju, A.V., Krishnan, K.S.A. (2024). Biodegradation of Microplastic Using Bacterial Cultures. In: Shahnawaz, M., Adetunji, C.O., Dar, M.A., Zhu, D. (eds) Microplastic Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-99-8357-5_26

Download citation

Publish with us

Policies and ethics

Navigation