Dilation Theory in Several Variables—The Symmetrized Bidisc

  • Chapter
  • First Online:
Dilations, Completely Positive Maps and Geometry

Part of the book series: Texts and Readings in Mathematics ((TRIM,volume 84))

  • 119 Accesses

Abstract

This chapter deals with the highly successful theory of dilation on the symmetrized bidisc. This involves the joint spectrum which we begin with. We then describe the concept of a spectral set. This leads us to the symmetrized bidisc. Its properties are studied. In preparation for dilation, we study an operator valued version of the Fejer-Riesz theorem. Then a pair of operators for which the symmetrized bidisc is a spectral set is considered and its dilation is explicitly constructed. A large class of examples is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Taylor, A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172–191 (1970)

    Article  MathSciNet  Google Scholar 

  2. K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhauser, Basel, 1992)

    Book  Google Scholar 

  3. J.L. Taylor, The analytic functional calculus for several com muting operators. Acta Math. 125, 1–38 (1970)

    Article  MathSciNet  Google Scholar 

  4. M. Putinar, Uniqueness of Taylor’s functional calculus. Proc. Am. Math. Soc. 89(4), 647 –650 (1983)

    Google Scholar 

  5. P.R. Halmos, Normal dilations and extensions of operators. Summa Brasil. Math. 2, 125–134 (1950)

    MathSciNet  Google Scholar 

  6. J. Bunce, The joint spectrum of commuting nonnormal opera tors. Proc. Am. Math. Soc. 29, 499–505 (1971)

    Article  MathSciNet  Google Scholar 

  7. M.D. Choi, Ch. Davis, The spectral map** theorem for joint approximate point spectrum. Bull. Am. Math. Soc. 80, 317–321 (1974)

    Article  MathSciNet  Google Scholar 

  8. W. Arveson, Subalgebras of C ?-algebras II. Acta Math. 128, 271–308 (1972)

    Article  MathSciNet  Google Scholar 

  9. J. Agler, Rational dilation on an annulus. Ann. Math. (2) 121(3), 537–563 (1985)

    Google Scholar 

  10. M.A. Dritschel, S. McCullough, The failure of rational di lation on a triply connected domain. J. Am. Math. Soc. 18, 873–918 (2005)

    Article  Google Scholar 

  11. J. Harland, J. Agler, B.J. Raphael, Classical function theory, operator dilation theory, and machine computation on multiply connected domains. Memoirs Am. Math. Soc. 892 (2008)

    Google Scholar 

  12. V.I. Paulsen, Every completely polynomially bounded operator is similar to a conraction. J. Funct. Anal. 55, 1–17 (1984)

    Article  MathSciNet  Google Scholar 

  13. G. Pisier, Introduction to Operator Space Theory, vol. 294. Lon don Mathematical Society Lecture Series (Cambridge University Press, 2002)

    Google Scholar 

  14. J. Agler, N.J. Young, A commutant lifting theorem for a do main in C 2 and spectral interpolation. J. Funct. Anal. 161(2), 452–477 (1999)

    Google Scholar 

  15. L. Kosinski, W. Zwonek, Nevanlinna-Pick problem and unique ness of left inverses in convex domains, symmetrized bidisc and tetrablock. J. Geom. Anal. 26, 1863–1890 (2016)

    Google Scholar 

  16. T. Bhattacharyya, S. Pal, S Shyam Roy, Dilation of ?-contractions by solving operator equations. Adv. Math. 230(2), 577–606 (2012)

    Google Scholar 

  17. J. Agler, N.J. Young, A model theory for ?-contractions. J. Oper. Th. 49(1), 45–60 (2003)

    Google Scholar 

  18. J.B. Conway, Functions of One Complex Variable, vol. 11, 2nd edn. Graduate Texts in Mathematics (Springer, New York-Berlin, 1978)

    Google Scholar 

  19. H. Alexander, J. Wermer, Several complex variables and Banach algebras, vol. 35, 3rd edn. Graduate Texts in Mathematics (Springer, New York, 1998, 2002)

    Google Scholar 

  20. M.A. Dritschel, J. Rovnyak, The operator Fejér-Riesz theorem. In: A Glimpse at Hilbert Space Operators, vol. 207 (2010), pp. 223–254. (Oper. Theory Adv. Appl.)

    Google Scholar 

  21. M.A. Dritschel, Factoring Non-negative Operator Valued Trigonometric Polynomials in Two Variables (2018). ar**v:1811.06005

  22. R.A. Martínez-Avenda\(\bar{\text{n}}\)o, P. Rosenthal, Graduate Texts in Mathematics vol. 237 (Springer, New York)

    Google Scholar 

  23. M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem. J. Math. Anal. Appl. 23, 139–147 (1968)

    Article  MathSciNet  Google Scholar 

  24. M. Bakonyi, T. Constantinescu, Schur’s Algorithm and Several Applications. Pitman Research Notes in Mathematics Series, vol. 261 (Longman Scientific & Technical, Harlow, 1992)

    Google Scholar 

  25. M. Rosenblum and J. Rovnyak. Hardy Classes and Operator Theory. Corrected Reprint of the 1985 Original (Dover Publications Inc, Mineola, NY, 1997)

    Google Scholar 

  26. C. Costara, The symmetrized bidisc and Lempert’s theorem. Bull. Lond. Math. Soc. 36(5), 656–662 (2004)

    Google Scholar 

  27. V. Ptak, N.J. Young, A generalization of the zero location theorem of Schur and Cohn. IEEE Trans. Autom. Control 25(5), 978–990 (1980)

    Google Scholar 

  28. J. Agler, N.J. Young, The hyperbolic geometry of the symmetrized bidisc. J. Geom. Anal. 14(3), 375–403 (2004)

    Google Scholar 

  29. T. Bhattacharyya, H. Sau, Holomorphic functions on the symmetrized bidisk-realization, interpolation and extension. J. Funct. Anal. 274, 504–524 (2018)

    Article  MathSciNet  Google Scholar 

  30. R.E. Curto, Applications of several complex variables to multi parameter spectral theory. In: Surveys of Some Recent Results in Operator Theory. Pitman Research Notes in Mathematics Series 192, vol. II. (Longman Scientific & Technical, Harlow, 1988), pp. 25–90

    Google Scholar 

  31. B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space (North-Holland, 1970)

    Google Scholar 

  32. R.G. Douglas, G. Misra, J. Sarkar, Contractive Hilbert modules and their dilations. Israel J. Math. 187, 141–165 (2012)

    Article  MathSciNet  Google Scholar 

  33. A. Edigarian, W. Zwonek, Geometry of the symmetrized poly disc. Arch. Math. (Basel) 84, 364–374 (2005)

    Article  MathSciNet  Google Scholar 

  34. G. Misra, S. Shyam Roy, G. Zhang, Reproducing kernel for a class of weighted Bergman spaces on the symmetrized poly disc. Proc. Am. Math. Soc. 141(7), 2361–2370 (2013)

    Google Scholar 

  35. R.G. Douglas, P.S. Muhly, C. Pearcy, Lifting commuting operators. Michigan Math. J. 15, 385–395 (1968)

    Article  MathSciNet  Google Scholar 

  36. H.K. Du, P. **, Perturbation of spectrums of 2 \(\times \) 2 operator matrices. Proc. Am. Math. Soc. 121, 761–766 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Rajarama Bhat .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Hindustan Book Agency

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, B.R., Bhattacharyya, T. (2023). Dilation Theory in Several Variables—The Symmetrized Bidisc. In: Dilations, Completely Positive Maps and Geometry. Texts and Readings in Mathematics, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-99-8352-0_6

Download citation

Publish with us

Policies and ethics

Navigation