Dilation Theory in Several Variables—The Euclidean Ball

  • Chapter
  • First Online:
Dilations, Completely Positive Maps and Geometry

Part of the book series: Texts and Readings in Mathematics ((TRIM,volume 84))

  • 126 Accesses

Abstract

We continue the study of dilation of a tuple. Now, we have a contractive tuple. The dilation theory involves the full Fock space in the non-commuting case and the symmetric Fock space in the commuting case. Hence these spaces along with their creation operators are studied. Then, we apply Stinespring’s dilation theorem developed in Chapter 2 to construct dilations. The structure of the dilation tuples are thoroughly decoded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bhatia, Matrix analysis. Graduate Texts in Mathematics (Springer, New York, 1997)

    Google Scholar 

  2. K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhauser, Basel, 1992)

    Book  Google Scholar 

  3. K.R. Davidson, C*-algebras By Example. Am. Math. Soc. (1996)

    Google Scholar 

  4. W. Arveson, Subalgebras of C*-algebras III: multivariable operator theory. Acta Math. 181, 159–228 (1998)

    Article  MathSciNet  Google Scholar 

  5. S. Drury, A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68, 300–304 (1978)

    MathSciNet  Google Scholar 

  6. A. Arias, G. Popescu, Noncommutative interpolation and Poisson transforms. Israel J. Math. 115, 205–234 (2000)

    Article  MathSciNet  Google Scholar 

  7. A. Arias, G. Popescu, Noncommutative interpolation and Poisson transforms II. Houston J. Math. 25, 79–98 (1999)

    MathSciNet  Google Scholar 

  8. G. Popescu, Isometric dilations for infinite sequences of non commuting operators. Trans. Am. Math. Soc. 316, 523–536 (1989)

    Article  Google Scholar 

  9. G. Popescu, Models for infinite sequences of noncommuting operators. Acta Sci. Math. (Szeged) 53, 355–368 (1989)

    MathSciNet  Google Scholar 

  10. G. Popescu, Poisson transforms on some C*-algebras generated by isometries. J. Funct. Anal. 161, 27–61 (1999)

    Article  MathSciNet  Google Scholar 

  11. J. Agler, The Arveson extension theorem and coanalytic models. Integral Eqs. Oper. Theory 5, 608–631 (1982)

    Article  MathSciNet  Google Scholar 

  12. A. Athavale, Model theory on the unit ball in Cm. J. Oper. Theory 27, 347–358 (1992)

    MathSciNet  Google Scholar 

  13. B.V.R. Bhat, T. Bhattacharyya, A model theory for q-commuting contractive tuples. J. Oper. Theory 47, 97–116 (2002)

    MathSciNet  Google Scholar 

  14. J.W. Bunce, Models for n-tuples of noncommuting operators. J. Funct. Anal. 57, 21–30 (1984)

    Article  MathSciNet  Google Scholar 

  15. A.E. Frazho, Models for non-commuting operators. J. Funct. Anal. 48, 1–11 (1982)

    Article  Google Scholar 

  16. B.V.R. Bhat, An index theory for quantum dynamical semi groups. Trans. Am. Math. Soc. 348, 561–583 (1996)

    Article  Google Scholar 

  17. R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Reprint of the 1983 original, vol. 15. Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 1997)

    Google Scholar 

  18. R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of op erator algebras. Vol. II. Advanced theory. Corrected reprint of the 1986 original, vol. 16. Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 1997)

    Google Scholar 

  19. J.B. Conway, A course in functional analysis. Graduate Texts in Mathematics, vol. 96, 2nd ed. (Springer, New York, 1990)

    Google Scholar 

  20. B.V.R. Bhat, R. Hillier, N. Mallick, U. Vijayakumar, Roots of completely positive maps. Linear Algebra Appl. 587, 143–165 (2020)

    Article  MathSciNet  Google Scholar 

  21. B.V.R. Bhat, T. Bhattacharyya, S. Dey, Standard non-commuting and commuting dilations for commuting tuples. Trans. Am. Math. Soc. 356, 1551–1568 (2004)

    Article  Google Scholar 

  22. P.R. Halmos, A Hilbert space problem book. Graduate Texts in Mathematics, No. 19, 2nd ed. (Springer, New York Berlin, 1982)

    Google Scholar 

  23. A. Athavale, On the intertwining of joint isometries. J. Oper. Theory 23, 339–350 (1990)

    MathSciNet  Google Scholar 

  24. S. Dey, Standard dilations of q-commuting tuples. Colloq. Math. 107, 141–165 (2007)

    Article  MathSciNet  Google Scholar 

  25. G. Popescu, Curvature invariant for Hilbert modules over free semigroup algebras. Adv. Math. 158, 264–309 (2001)

    Article  MathSciNet  Google Scholar 

  26. R.G. Douglas, G. Misra, Geometric invariants for resolutions of Hilbert modules. Nonselfadjoint operator algebras, operator theory, and related topics. Oper. Theory Adv. Appl. 104, 83–112 (1998)

    Google Scholar 

  27. R.G. Douglas, G. Misra, C. Varughese, On quotient modules—the case of arbitrary multiplicity. J. Funct. Anal. 174, 364–398 (2000)

    Article  MathSciNet  Google Scholar 

  28. R.G. Douglas, V.I. Paulsen, Hilbert Modules Over Function Algebras (Longman Scientific & Technical, Harlow, 1989)

    Google Scholar 

  29. W. Arveson, The curvature invariant of a Hilbert module over C[z1, zd]. J. Reine Angew. Math. 522, 173–236 (2000)

    MathSciNet  Google Scholar 

  30. W. Arveson, On the index and dilations of completely positive semigroups. Internat. J. Math. 10, 791–823 (1999)

    Article  MathSciNet  Google Scholar 

  31. W. Arveson, The index of a quantum dynamical semigroup. J. Funct. Anal. 146, 557–588 (1997)

    Article  MathSciNet  Google Scholar 

  32. B.V.R. Bhat, Minimal dilations of quantum dynamical semi groups to semigroups of endomorphisms of C*-algebras. J. Ramanujan Math. Soc. 14, 109–124 (1999)

    MathSciNet  Google Scholar 

  33. G. Misra, V. Pati, Contractive and completely contractive modules, matricial tangent vectors and distance decreasing metrics. J. Oper. Theory 30, 353–380 (1993)

    MathSciNet  Google Scholar 

  34. V.I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry. J. Funct. Anal. 109, 113–129 (1992)

    Article  MathSciNet  Google Scholar 

  35. G. Misra, N.S.N. Sastry, Bounded modules, extremal problems, and a curvature inequality. J. Funct. Anal. 88, 118–134 (1990)

    Article  MathSciNet  Google Scholar 

  36. G. Misra, N.S.N. Sastry, Completely bounded modules and associated extremal problems. J. Funct. Anal. 91, 213–220 (1990)

    Article  MathSciNet  Google Scholar 

  37. G. Pisier, Similarity Problems and Completely Bounded Maps. Lecture Notes in Mathematics vol. 1618, 2nd ed. (Springer, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Rajarama Bhat .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Hindustan Book Agency

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, B.R., Bhattacharyya, T. (2023). Dilation Theory in Several Variables—The Euclidean Ball. In: Dilations, Completely Positive Maps and Geometry. Texts and Readings in Mathematics, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-99-8352-0_4

Download citation

Publish with us

Policies and ethics

Navigation