• 96 Accesses

Abstract

In eukaryotic genomes, approximately 90\(\%\) of genes are transcribed genes, of which only 1–2\(\%\) encode proteins, while the majority of transcribed genes are non-coding RNAs. Non-coding RNAs represent one of the most rapidly advancing frontiers in the field of life sciences. They continuously enhance our understanding of the essence of life, lead the deepening of life sciences, and are poised to make significant breakthroughs in modern life science and technology, providing novel ideas and techniques for genetic breeding; intervention, prevention, and treatment of major human diseases; as well as drug research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo J M, Tang H. Non-coding RNA was associated with the tumor[M]. Bei**g: People’s Health Publishing House, 2014.

    Google Scholar 

  2. DENG L, GUAN J, WEI X, et al. Boosting prediction performance of protein–protein interaction hot spots by using structural neighborhood properties[J]. Journal of Computational Biology, 2013, 20(11): 878–891.

    Article  MathSciNet  Google Scholar 

  3. ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389–3402.

    Article  Google Scholar 

  4. ASHKENAZY H, EREZ E, MARTZ E, et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids[J]. Nucleic Acids Research, 2010, 38(suppl_2): W529-W533.

    Google Scholar 

  5. LAI E C, TOMANCAK P, WILLIAMS R W, et al. Computational identification of Drosophila microRNA genes[J]. Genome Biology, 2003, 4(7): 1–20.

    Article  Google Scholar 

  6. Yang B F, Wang Z G. Non-coding micromolecular RNA with cardiac disease[M]. Bei**g: People’ s Health Publishing House, 2018.

    Google Scholar 

  7. LAI E C, TOMANCAK P, WILLIAMS R W, et al. Computational identification of Drosophila microRNA genes[J]. Genome Biology, 2003, 4(7): 1–20.

    Article  Google Scholar 

  8. HIGA R H, TOZZI C L. Prediction of binding hot spot residues by using structural and evolutionary parameters[J]. Genetics and Molecular Biology, 2009, 32: 626–633.

    Article  Google Scholar 

  9. JOOSTEN R P, TE BEEK T A H, KRIEGER E, et al. A series of PDB related databases for everyday needs[J]. Nucleic Acids Research, 2010, 39(suppl): D411-D419.

    Google Scholar 

  10. SHINGATE P, MANOHARAN M, SUKHWAL A, et al. ECMIS: computational approach for the identification of hotspots at protein-protein interfaces[J]. BMC Bioinformatics, 2014, 15(1): 1–10.

    Article  Google Scholar 

  11. LEE B, RICHARDS F M. The interpretation of protein structures: estimation of static accessibility[J]. Journal of Molecular Biology, 1971, 55(3): 379-IN4.non-coding.

    Google Scholar 

  12. KORTEMME T, KIM D E, BAKER D. Computational alanine scanning of protein-protein interfaces[J]. Science’s STKE, 2004, (219): l2.

    Google Scholar 

  13. YANG Y, ZHAN L, ZHANG W, et al. RNA secondary structure in mutually exclusive splicing[J]. Nature Structural and Molecular Biology, 2011, 18(2): 159–168.

    Article  Google Scholar 

  14. MARTINEZ H M, MAIZEL J V, SHAPIRO B A. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA[J]. Journal of Biomolecular Structure and Dynamics, 2008, 25(6): 669–683.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Guangxi Education Publishing House

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q. (2024). Non-Coding RNA Function and Structure. In: Association Analysis Techniques and Applications in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8251-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8251-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8250-9

  • Online ISBN: 978-981-99-8251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation