Lignocellulosic Waste to Biofuel-Paddy Straw to Bioethanol: Advancement in Technology

  • Chapter
  • First Online:
Paddy Straw Waste for Biorefinery Applications

Abstract

Paddy is amongst the most consumable crops in the world. In fact, in Asia, it is known as the most stable food item. As per the growing population, there is a need for the large amount of production of rice crops which also generates large amounts of rice straw along with the rice as residue in the fields. Nowadays, farmers and others are using this rice straw unsustainably by simply burning these paddy straws in the fields which directly contributes to the population as it emits large amounts of greenhouse gas in the environment. So, there is a need for the sustainable development of these paddy straws to convert them into good end products to make them used appropriately. Utilizing paddy straw as a valuable source of lignocellulosic biomass presents a promising method for generating bioethanol. This sustainable use of paddy straw for bioethanol will also bring lots of additional income from the waste to the country. The present chapter comprises components of lignocellulose biomass (LCB) in rice straw and different steps to produce bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  • Aitken S (2012) Wood chemistry and secondary cell wall structure. In: FRST 210—Forest biology II. The University of British Columbia, Vancouver. http://frst210.forestry.ubc.ca/lecture/

    Google Scholar 

  • Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25(4):184–192

    Article  Google Scholar 

  • Atanu B, Saha BC, Lawton JW, Shogren RL, Willett JL (2006) Process for obtaining cellulose acetate from agricultural by-products. Carbohydr Polym 64:134–137

    Article  Google Scholar 

  • Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G et al (2022) Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—a critical review. Bioresour Technol 344:126195

    Article  Google Scholar 

  • Azuma J, Tanaka F, Koshijima T (1984) Enhancement of enzymic susceptibility of lignocellulosic wastes by microwave irradiation. Hakko Kogaku Zasshi (Japan) 62(4):377–384

    Google Scholar 

  • Bajpai P, Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. Springer, Singapore, pp 7–12

    Chapter  Google Scholar 

  • Bak JS (2014) Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass. Biotechnol Rep 4:30–33

    Article  Google Scholar 

  • Belkacemi K, Turcotte G, De Halleux D, Savoie P (1998) Ethanol production from AFEX-treated forages and agricultural residues. In: Biotechnology for fuels and chemicals: proceedings of the nineteenth symposium on biotechnology for fuels and chemicals held May 4-8. 1997, at Colorado Springs, Colorado. Humana Press, pp 441–462

    Chapter  Google Scholar 

  • Ballerini D, Desmarquest JP, Pourquie J, Nativel F, Rebeller M (1994) Ethanol production from lignocellulosics: large scale experimentation and economics. Bioresour Technol 50(1):17–23

    Article  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Article  Google Scholar 

  • Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724

    Article  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    Article  Google Scholar 

  • Bouchard J, Nguyen TS, Chornet E, Overend RP (1991) Analytical methodology for biomass pretreatment. Part 2: characterization of the filtrates and cumulative product distribution as a function of treatment severity. Bioresour Technol 36(2):121–131

    Article  Google Scholar 

  • Branco JEH, Branco DH, de Aguiar EM, Caixeta Filho JV, Rodrigues L (2019) Study of optimal locations for new sugarcane mills in Brazil: application of a MINLP network equilibrium model. Biomass Bioenergy 127:105249

    Article  Google Scholar 

  • Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801

    Article  Google Scholar 

  • Cavka A, Jönsson LJ (2013) Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol 136:368–376

    Article  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin DA, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L (ed) Biofuels, Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, pp 67–93

    Chapter  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  Google Scholar 

  • Claassen PAM, Van Lier JB, Lopez Contreras AM, Van Niel EWJ, Sijtsma L, Stams AJM et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  Google Scholar 

  • Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX (2022) Bio-based polymers with performance-advantaged properties. Nat Rev Mater 7(2):83–103

    Article  Google Scholar 

  • Drummond ARF, Drummond IW (1996) Pyrolysis of sugar cane bagasse in a wire-mesh reactor. Ind Eng Chem Res 35(4):1263–1268

    Article  Google Scholar 

  • Dubey P, Yousuf O (2021) An overview of fruit by-products valorization: a step towards sustainable utilization. Ind J Pure App Biosci 9(1):46–55

    Article  Google Scholar 

  • Farooqui A, Tripathi G, Moheet K, Dubey P, Ahmad S, Husain A, Shamim A, Mahfooz S (2021) Algal biomass: potential renewable feedstock for bioenergy production. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: integrative solution for existing roadblock. Springer, Singapore, pp 85–113

    Chapter  Google Scholar 

  • Gadde B, Bonnet S, Menke C, Garivait S (2009a) Air pollutant emissions from rice straw open field burning in India, Thailand and The Philippines. Environ Pollut 157(5):1554–1558

    Article  Google Scholar 

  • Gadde B, Menke C, Wassmann R (2009b) Rice straw as a renewable energy source in India, Thailand, and The Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenergy 33(11):1532–1546

    Article  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766

    Article  Google Scholar 

  • Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98:23–35

    Article  Google Scholar 

  • Griebl, A., Lange, T., Weber, H., Milacher, W., & Sixta, H. (2005). Xylo-oligosaccharide (XOS) formation through hydrothermolysis of xylan derived from viscose process. In Macromolecular symposia (232, 1, 107-120). Weinheim: Wiley

    Google Scholar 

  • Gu F, Wang W, **g L, ** Y (2013) Sulfite–formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification. Bioresour Technol 142:218–224

    Article  Google Scholar 

  • Gupte AP, Basaglia M, Casella S, Favaro L (2022) Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renew Sust Energ Rev 167:112673

    Article  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, pp 21–38

    Chapter  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8(3):244–262

    Article  Google Scholar 

  • Hessien MM, Rashad MM, Zaky RR, Abdel-Aal EA, El-Barawy KA (2009) Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw. Mater Sci Eng B 162(1):14–21

    Article  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S et al (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711

    Article  Google Scholar 

  • Hsu TA (2018) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization: pretreatment of biomass. Taylor and Francis, Washington DC, pp 179–212

    Chapter  Google Scholar 

  • Iyer PV, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol 57:121–132

    Article  Google Scholar 

  • Jiménez L, Sánchez IY, López F (1990) Characterization of Spanish agricultural residues with a view to obtaining cellulose pulp. TAPPI J 73(8):173–176

    Google Scholar 

  • ** S, Chen H (2006) Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem Eng J 30(3):225–230

    Article  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):1–10

    Article  Google Scholar 

  • Jørgensen H (2009) Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Appl Biochem Biotechnol 153:44–57

    Article  Google Scholar 

  • Kadam KL, Forrest LH, Jacobson WA (2000) Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy 18(5):369–389

    Article  Google Scholar 

  • Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20(1):103–110

    Article  Google Scholar 

  • Khan JS (2012) Analysis of Indian agricultural web portals for disseminating information to farmers. Allana Manage J Res Pune 2:67–70

    Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):1994–2006

    Article  Google Scholar 

  • Knappert D, Grethlein H, Converse A (1980) Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 22(7):1449–1463

    Article  Google Scholar 

  • Koul B, Yakoob M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environ Res 206:112285

    Article  Google Scholar 

  • Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3(3):199–208

    Article  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:1–19

    Article  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    Article  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  Google Scholar 

  • Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  Google Scholar 

  • Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP (2020) Sustainability of the four generations of biofuels—a review. Int J Energy Res 44(12):9266–9282

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Teixeira JA (2013) Application of lignocelulosic residues in the production of cellulase and hemicellulases from fungi. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 31–64

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    Article  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830

    Article  Google Scholar 

  • Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69(1):20–28

    Article  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K et al (2005) Biorefining of softwoods using ethanol organosolv pul**: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  Google Scholar 

  • Pandey A (2008) Handbook of plant-based biofuels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15(3–4):115–120

    Article  Google Scholar 

  • Park JY, Kanda E, Fukushima A, Motobayashi K, Nagata K, Kondo M et al (2011) Contents of various sources of glucose and fructose in rice straw, a potential feedstock for ethanol production in Japan. Biomass Bioenergy 35(8):3733–3735

    Article  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DTIC document. U.S. Department of Energy and U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Prasad A, Ross A, Rosenberg P, Dye C (2016) A world of cities and the end of TB. Trans R Soc Trop Med Hyg 110(3):151–152

    Article  Google Scholar 

  • Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P et al (2020) Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. React Chem Eng 5(11):2017–2047

    Article  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  Google Scholar 

  • Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B et al (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457

    Article  Google Scholar 

  • Robak K, Balcerek M (2020) Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol Res 240:126534

    Article  Google Scholar 

  • Robinson P (2006) University of California Davis, personal communication

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700

    Article  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13(1):167–178

    Article  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151

    Article  Google Scholar 

  • Schmitt E, Bura R, Gustafson R, Cooper J, Vajzovic A (2012) Converting lignocellulosic solid waste into ethanol for the state of Washington: an investigation of treatment technologies and environmental impacts. Bioresour Technol 104:400–409

    Article  Google Scholar 

  • Schutyser W, Renders AT, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908

    Article  Google Scholar 

  • Singh A, Basak P (2019) Economic and environmental evaluation of rice straw processing technologies for energy generation: a case study of Punjab, India. J Clean Prod 212:343–352

    Article  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012

    Article  Google Scholar 

  • Singh R, Tiwari S, Srivastava M, Shukla A (2013) Performance study of combined microwave and acid pretreatment method for enhancing enzymatic digestibility of rice straw for bioethanol production. Plant Knowledge J 2(4):157–162

    Google Scholar 

  • Singh R, Shukla A, Tiwari S, Srivastava M (2014a) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sust Energ Rev 32:713–728

    Article  Google Scholar 

  • Singh R, Tiwari S, Srivastava M, Shukla A (2014b) Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. J Energy 2014:1–7

    Google Scholar 

  • Singh R, Srivastava M, Shukla A (2016) Environmental sustainability of bioethanol production from rice straw in India: a review. Renew Sust Energ Rev 54:202–216

    Article  Google Scholar 

  • Singh P, Dubey P, Younis K, Yousuf O (2022) A review on the valorization of coconut shell waste. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03001-2

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    Article  Google Scholar 

  • Sulbarán-de-Ferrer B, Aristiguieta M, Dale BE, Ferrer A, Ojeda-de-Rodriguez G (2003) Enzymatic hydrolysis of ammonia-treated rice straw. Appl Biochem Biotechnol 105:155–164

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  Google Scholar 

  • Taherzadeh MJ, Niklasson C (2004) Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. ACS Publications, Washington, DC, pp 49–68

    Chapter  Google Scholar 

  • Takacs E, Wojnarovits L, Földváry C, Hargittai P, Borsa J, Sajo I (2000) Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiat Phys Chem 57(3–6):399–403

    Article  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018

    Article  Google Scholar 

  • Tran TTA, Le TKP, Mai TP, Nguyen DQ (2019) Bioethanol production from lignocellulosic biomass. In: Yun Y (ed) Alcohol fuels—current technologies and future prospect. IntechOpen, London, pp 1–14

    Google Scholar 

  • Tripathi G, Jamal A, Jamal T, Faiyaz M, Farooqui A (2022) Phyco-nanotechnology: an emerging nanomaterial synthesis method and its applicability in biofuel production. In: Srivastava M, Malik MA, Mishra P (eds) Green nano solution for bioenergy production enhancement. Springer Nature, Singapore, pp 169–200

    Chapter  Google Scholar 

  • Tye YY, Lee KT, Abdullah WNW, Leh CP (2016) The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sust Energ Rev 60:155–172

    Article  Google Scholar 

  • Van Dyk JS, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  Google Scholar 

  • Vazquez M, Oliva M, Tellez-Luis SJ, Ramírez JA (2007) Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98(16):3053–3060

    Article  Google Scholar 

  • Volynets B, Ein-Mozaffari F, Dahman Y (2017) Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing. Green Process Synth 6(1):1–22

    Article  Google Scholar 

  • Watanabe A, Katoh K, Kimura M (1993) Effect of rice straw application on CH4 emission from paddy fields: II. Contribution of organic constituents in rice straw. Soil Sci Plant Nutr 39(4):707–712

    Article  Google Scholar 

  • Wyman C (1996) Handbook on bioethanol: production and utilization. CRC Press, Boca Raton

    Google Scholar 

  • **ong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose I. J South China Univ Technol 28(1):84–89

    Google Scholar 

  • Yao RS, Hu HJ, Deng SS, Wang H, Zhu HX (2011) Structure and saccharification of rice straw pretreated with sulfur trioxide micro-thermal explosion collaborative dilutes alkali. Bioresour Technol 102(10):6340–6343

    Article  Google Scholar 

  • Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014:957102

    Article  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvina Farooqui or Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irum et al. (2024). Lignocellulosic Waste to Biofuel-Paddy Straw to Bioethanol: Advancement in Technology. In: Srivastava, N., Verma, B., Mishra, P.K. (eds) Paddy Straw Waste for Biorefinery Applications. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8224-0_5

Download citation

Publish with us

Policies and ethics

Navigation