Deep Learning-Empowered Unsupervised Maritime Anomaly Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1967))

Included in the following conference series:

  • 586 Accesses

Abstract

Automatically detecting anomalous vessel behaviour is an extremely crucial problem in intelligent maritime surveillance. In this paper, a deep learning-based unsupervised method is proposed for detecting anomalies in vessel trajectories, operating at both the image and pixel levels. The original trajectory data is converted into a two-dimensional matrix representation to generate a vessel trajectory image. A wasserstein generative adversarial network (WGAN) model is trained on a dataset of normal vessel trajectories, while simultaneously training an encoder to map the trajectory image to a latent space. During anomaly detection, the vessel trajectory image is mapped to a hidden vector by the encoder, which is then used by the generator to reconstruct the input image. The anomaly score is computed based on the residuals between the reconstructed trajectory image and the discriminator’s residuals, enabling image-level anomaly detection. Furthermore, pixel-level anomaly detection is achieved by analyzing the residuals of the reconstructed image pixels to localize the anomalous trajectory. The proposed method is compared to autoencoder (AE) and variational autoencoder (VAE) model, and experimental results demonstrate its superior performance in anomaly detection and pixel-level localization. This method has substantial potential for detecting anomalies in vessel trajectories, as it can detect anomalies in arbitrary waters without prior knowledge, relying solely on training with normal vessel trajectories. This approach significantly reduces the need for human and material resources. Moreover, it provides valuable insights and references for trajectory anomaly detection in other domains, holding both theoretical and practical importance.

L. Weng and M. Liang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kazemi, S., Abghari, S., Lavesson, N., Johnson, H., Ryman, P.: Open data for anomaly detection in maritime surveillance. Exp. Syst. Appl. 40(14), 5719–5729 (2013)

    Article  Google Scholar 

  2. Liang, M., Zhan, Y., Liu, R.W.: MVFFNet: multi-view feature fusion network for imbalanced ship classification. Pattern Recogn. Lett. 151, 26–32 (2021)

    Article  Google Scholar 

  3. Liang, M., Liu, R.W., Li, S., **ao, Z., Liu, X., Lu, F.: An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation. Ocean Eng. 225, 108803 (2021)

    Article  Google Scholar 

  4. Liang, M., Liu, R.W., Zhan, Y., Li, H., Zhu, F., Wang, F.Y.: Fine-grained vessel traffic flow prediction with a spatio-temporal multigraph convolutional network. IEEE Trans. Intell. Transp. Syst. 23(12), 23694–23707 (2022)

    Article  Google Scholar 

  5. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  6. Forti, N., d’Afflisio, E., Braca, P., Millefiori, L.M., Willett, P., Carniel, S.: Maritime anomaly detection in a real-world scenario: ever given grounding in the Suez Canal. IEEE Trans. Intell. Transp. Syst. 23(8), 13904–13910 (2021)

    Article  Google Scholar 

  7. Ristic, B., La Scala, B., Morelande, M., Gordon, N.: Statistical analysis of motion patterns in AIS data: anomaly detection and motion prediction. In: 2008 11th International Conference on Information Fusion, pp. 1–7. IEEE (2008)

    Google Scholar 

  8. Zhen, R., Riveiro, M., **, Y.: A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance. Ocean Eng. 145, 492–501 (2017)

    Article  Google Scholar 

  9. Li, H., Liu, J., Liu, R.W., **ong, N., Wu, K., Kim, T.: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis. Sensors 17(8), 1792 (2017)

    Article  Google Scholar 

  10. Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013)

    Article  MATH  Google Scholar 

  11. Yan, W., Wen, R., Zhang, A.N., Yang, D.: Vessel movement analysis and pattern discovery using density-based clustering approach. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3798–3806. IEEE (2016)

    Google Scholar 

  12. Liu, B., de Souza, E.N., Matwin, S., Sydow, M.: Knowledge-based clustering of ship trajectories using density-based approach. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 603–608. IEEE (2014)

    Google Scholar 

  13. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

    Article  MATH  Google Scholar 

  14. Lei, P.R.: A framework for anomaly detection in maritime trajectory behavior. Knowl. Inf. Syst. 47(1), 189–214 (2016)

    Article  Google Scholar 

  15. Karataş, G.B., Karagoz, P., Ayran, O.: Trajectory pattern extraction and anomaly detection for maritime vessels. IoT 16, 100436 (2021)

    Google Scholar 

  16. Nguyen, D., Vadaine, R., Hajduch, G., Garello, R., Fablet, R.: GeoTrackNet - a maritime anomaly detector using probabilistic neural network representation of AIS tracks and a contrario detection. IEEE Trans. Intell. Transp. Syst. 23(6), 5655–5667 (2021)

    Article  Google Scholar 

  17. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  18. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. ar**v preprint ar**v:1511.06434 (2015)

  19. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  20. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  21. Fluss, R., Faraggi, D., Reiser, B.: Estimation of the Youden Index and its associated cutoff point. Biometrical J. J. Math. Meth. Biosci. 47(4), 458–472 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Shuo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, L., Liang, M., Gao, R., Chen, Z.S. (2024). Deep Learning-Empowered Unsupervised Maritime Anomaly Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation