High-Order Control Barrier Function Based Robust Collision Avoidance Formation Tracking of Constrained Multi-agent Systems

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14447))

Included in the following conference series:

  • 1146 Accesses

Abstract

In this work, we propose a high-order control barrier functions (HOCBFs) based safe formation tracking controller for second-order multi-agent systems subject to input uncertainties and both velocity and input constraints (VICs). First, a nominal velocity and input constrained formation tracking controller is proposed which using sliding mode control theory to eliminate the effects of the uncertain dynamics. Then, the HOCBFs-based collision avoidance conditions are derived for the followers where both collision among the agents and between the agents and the obstacles are considered. Finally, the collision avoidance formation tracking controller for the constrained uncertain second-order multi-agent systems is constructed by formulating a local quadratic programming (QP) problem for each follower. It is shown that under proper initial conditions, there always exist feasible control inputs such that collision avoidance can be guaranteed under both VICs of the agents. Simulation examples illustrate the effectiveness of the proposed control strategy.

Supported by the National Natural Science Foundation of China under Grant No. 62173085.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Industr. Inf. 9(1), 427–438 (2013)

    Article  Google Scholar 

  2. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, L., He, H., Zeng, Z., Ge, M.: Model-independent formation tracking of multiple Euler-Lagrange systems via bounded inputs. IEEE Trans. Cybern. 51(5), 2813–2823 (2021)

    Article  Google Scholar 

  4. Fu, J., Wen, G., Yu, W., Huang, T.: Consensus of second-order multi-agent systems with both velocity and input constraints. IEEE Trans. Industr. Electron. 66(10), 7946–7955 (2019)

    Article  Google Scholar 

  5. Mastellone, S., Stipanović, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  6. Peng, Z., Wang, D., Li, T., Han, M.: Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity perservation and collision avoidance. IEEE Trans. Cybern. 50(6), 2527–2535 (2020)

    Article  Google Scholar 

  7. Murry, R.M., Dunbar, W.B.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2016)

    MathSciNet  Google Scholar 

  8. Wang, P., Ding, B.: A synthesis approach of distributed model predictive control of for homogeneous multi-agent system with collision avoidance. Int. J. Control 87(1), 52–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certificates for safe swarm behavior. IFAC-PapersOnLine 48(27), 68–73 (2015)

    Article  Google Scholar 

  10. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free multirobot systems. IEEE Trans. Rob. 33(3), 661–674 (2017)

    Article  Google Scholar 

  11. Fu, J., Lv, Y., Wen, G., Yu, X., Huang, T.: Velocity and input constrained coordination of second-order multi-agent systems with relative output information. IEEE Trans. Network Sci. Eng. 7(3), 1925–1938 (2020)

    Article  MathSciNet  Google Scholar 

  12. Wei, X., Belta, C.: High order control barrier functions. IEEE Trans. Autom. Control 67(7), 3655–3662 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, J., Wen, G., Yu, X., Huang, T.: Robust collision-avoidance formation navigation of velocity and input-constrained multirobot systems. IEEE Trans. Cybern., 1–13 (2023)

    Google Scholar 

  14. Zhang, H., Li, Z., Qu, Z., Lewis, F.L.: On constructing Lyapunov functions for multi-agent systems. Automatica 58, 39–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Alan, A., Taylor, A.J., He, C.R., Orosz, G., Ames, A.D.: Safe controller synthesis with tunable input-to-state safe control barrier functions. IEEE Control Syst. Lett. 6, 908–913 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D., Fu, J. (2024). High-Order Control Barrier Function Based Robust Collision Avoidance Formation Tracking of Constrained Multi-agent Systems. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14447. Springer, Singapore. https://doi.org/10.1007/978-981-99-8079-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8079-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8078-9

  • Online ISBN: 978-981-99-8079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation