Micro-expression Recognition Based on PCB-PCANet+

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 548 Accesses

Abstract

Micro-expressions (MEs) have the characteristics of small motion amplitude and short duration. How to learn discriminative ME features is a key issue in ME recognition. Motivated by the success of PCB model in person retrieval, this paper proposes a ME recognition method called PCB-PCANet+. Considering that the important information of MEs is mainly concentrated in a few key facial areas like eyebrows and eyes, based on the output of shallow PCANet+, we use a multiple branch LSTM networks to separately learn the local spatio-temporal features for each facial ROI region. In addition, in the stage of multiple branch fusion, we design a feature weighting strategy according to the significances of different facial regions to further improve the performances of ME recognition. The experimental results on the SMIC and CASME II datasets validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pfister, T., Li, X., Zhao, G., Pietikäinen, M.: Recognising spontaneous facial micro-expressions. In: Proceedings of International Conference on Computer Vision, pp. 1449–1456 (2011)

    Google Scholar 

  2. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  3. Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: Inducement, collection and baseline. In: Proceedings of 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–6 (2013)

    Google Scholar 

  4. Wang, Y., See, J., Phan, R.C.-W., Oh, Y.-H.: LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 525–537. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_34

    Chapter  Google Scholar 

  5. Zong, Y., Huang, X., Zheng, W., Cui, Z., Zhao, G.: Learning from hierarchical spatiotemporal descriptors for micro-expression recognition. IEEE Trans. Multimedia 20(11), 3160–3172 (2018)

    Article  Google Scholar 

  6. Verma, M., Vipparthi, S.K., Singh, G., Murala, S.: Learnet: dynamic imaging network for micro expression recognition. IEEE Trans. Image Process. 29, 1618–1627 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A.: Action recognition with dynamic image networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2799–2813 (2018)

    Article  Google Scholar 

  8. Thuseethan, S., Rajasegarar, S., Yearwood, J.: Deep3DCANN: a deep 3DCNN-ANN framework for spontaneous micro-expression recognition. Inf. Sci. 630, 341–355 (2023)

    Article  Google Scholar 

  9. Xu, S., Zhou, Z., Shang, J.: Asymmetric adversarial-based feature disentanglement learning for cross-database micro-expression recognition. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5342–5350 (2022)

    Google Scholar 

  10. Mayya, V., Pai, R.M., Manohara Pai, M.: Combining temporal interpolation and DCNN for faster recognition of micro-expressions in video sequences. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 699–703 (2016)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  12. **a, B., Wang, S.: Micro-expression recognition enhanced by macro-expression from spatial-temporal domain. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1186–1193 (2021)

    Google Scholar 

  13. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European conference on computer vision (ECCV), pp. 480–496 (2018)

    Google Scholar 

  14. Yan, W.J., et al.: CASME II: an improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 9(1), 1–8 (2014)

    Article  Google Scholar 

  15. Huang, X., Wang, S., Zhao, G., Piteikainen, M.: Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: Proceedings of IEEE International Conference on Computer Vision Works, Los Alamitos, CA, USA, pp. 1–9 (2015)

    Google Scholar 

  16. Patel, D., Hong, X., Zhao, G.: Selective deep features for micro-expression recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2258–2263 (2016)

    Google Scholar 

  17. Li, J., Wang, Y., See, J., Liu, W.: Micro-expression recognition based on 3d flow convolutional neural network. Pattern Analysis and Applications 22(4), 1331–1339 (2019)

    Article  MathSciNet  Google Scholar 

  18. Zhou, L., Mao, Q., Huang, X., Zhang, F., Zhang, Z.: Feature refinement: an expression-specific feature learning and fusion method for micro-expression recognition. Pattern Recogn. 122, 108275 (2022)

    Article  Google Scholar 

  19. Wang, S., Guan, S., Lin, H., Huang, J., Long, F., Yao, J.: Micro-expression recognition based on optical flow and pcanet+. Sensors 22(11), 4296 (2022)

    Article  Google Scholar 

  20. Khor, H.Q., See, J., Phan, R.C.W., Lin, W.: Enriched long-term recurrent convolutional network for facial micro-expression recognition. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), pp. 667–674 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Long, F., Yao, J. (2024). Micro-expression Recognition Based on PCB-PCANet+. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation