Contrastive Kernel Subspace Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14451))

Included in the following conference series:

  • 703 Accesses

Abstract

As a class of nonlinear subspace clustering methods, kernel subspace clustering has shown promising performance in many applications. This paper focuses on the kernel selection problem in the kernel subspace clustering model. Currently, the kernel function is typically chosen by the single kernel or multiple kernel methods. The former relies on a given kernel function, which poses challenges in clustering tasks with limited prior information, making it difficult to determine a suitable kernel function beforehand. Multiple kernel methods usually assume that the optimal kernel is near a series of predefined base kernels, which limits the expressive ability of the optimal kernel. Furthermore, multiple kernel methods tend to have higher solution complexity than single kernel methods. To address these limitations, this paper utilizes contrastive learning to learn the optimal kernel adaptively and proposes the Contrastive Kernel Subspace Clustering (CKSC) method. Unlike multiple kernel approaches, CKSC is not constrained by the multiple kernel assumption. Specifically, CKSC integrates a contrastive regularization into the kernel subspace clustering model, encouraging neighboring samples in the original space to stay nearby in the reproducing kernel Hilbert space (RKHS). In this way, the resulting kernel map** can preserve the cluster structure of the data, which will benefit downstream clustering tasks. The clustering experiments on seven benchmark data sets validate the effectiveness of the proposed CKSC method.

This work was partially supported by the National Key Research and Development Program of China (No. 2018AAA0100204), a key program of fundamental research from Shenzhen Science and Technology Innovation Commission (No. JCYJ20200109113403826), the Major Key Project of PCL (No. 2022ZD0115301), and an Open Research Project of Zhejiang Lab (NO.2022RC0AB04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdolali, M., Gillis, N.: Beyond linear subspace clustering: A comparative study of nonlinear manifold clustering algorithms. Comput. Sci. Rev. 42, 100435 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bu, F.: A high-order clustering algorithm based on dropout deep learning for heterogeneous data in cyber-physical-social systems. IEEE Access 6, 11687–11693 (2018)

    Article  Google Scholar 

  3. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix factorization. In: IJCAI, pp. 1010–1015 (2009)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (1), pp. 539–546. IEEE Computer Society (2005)

    Google Scholar 

  6. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M.A., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: NIPS, pp. 766–774 (2014)

    Google Scholar 

  7. Du, L., et al.: Robust multiple kernel k-means using l21-norm. In: IJCAI, pp. 3476–3482. AAAI Press (2015)

    Google Scholar 

  8. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  9. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: AISTATS. JMLR Proceedings, vol. 9, pp. 297–304. JMLR.org (2010)

    Google Scholar 

  10. Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS, pp. 609–616. MIT Press (2006)

    Google Scholar 

  11. Jalali, A., Chen, Y., Sanghavi, S., Xu, H.: Clustering partially observed graphs via convex optimization. In: ICML, pp. 1001–1008. Omnipress (2011)

    Google Scholar 

  12. Kang, Z., Lu, X., Lu, Y., Peng, C., Chen, W., Xu, Z.: Structure learning with similarity preserving. Neural Netw. 129, 138–148 (2020)

    Article  Google Scholar 

  13. Kang, Z., Lu, X., Yi, J., Xu, Z.: Self-weighted multiple kernel learning for graph-based clustering and semi-supervised classification. In: IJCAI, pp. 2312–2318. ijcai.org (2018)

    Google Scholar 

  14. Kang, Z., Lu, Y., Su, Y., Li, C., Xu, Z.: Similarity learning via kernel preserving embedding. In: AAAI, pp. 4057–4064. AAAI Press (2019)

    Google Scholar 

  15. Kang, Z., Peng, C., Cheng, Q.: Twin learning for similarity and clustering: A unified kernel approach. In: AAAI, pp. 2080–2086. AAAI Press (2017)

    Google Scholar 

  16. Kang, Z., et al.: Structured graph learning for clustering and semi-supervised classification. Pattern Recogn. 110, 107627 (2021)

    Article  Google Scholar 

  17. Li, Y., Hu, P., Liu, J.Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: AAAI, pp. 8547–8555. AAAI Press (2021)

    Google Scholar 

  18. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  20. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  21. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  22. Lv, S., Wei, L., Zhang, Q., Liu, B., Xu, Z.: Improved inference for imputation-based semisupervised learning under misspecified setting. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 6346–6359 (2022)

    Article  MathSciNet  Google Scholar 

  23. Pan, Y., Yu, H.: Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1481–1487 (2017)

    Article  Google Scholar 

  24. Patel, V.M., Vidal, R.: Kernel sparse subspace clustering. In: ICIP, pp. 2849–2853. IEEE (2014)

    Google Scholar 

  25. Peng, B., Zhu, W.: Deep structural contrastive subspace clustering. In: ACML. Proceedings of Machine Learning Research, vol. 157, pp. 1145–1160. PMLR (2021)

    Google Scholar 

  26. Peng, X., Yi, Z., Tang, H.: Robust subspace clustering via thresholding ridge regression. In: AAAI, pp. 3827–3833. AAAI Press (2015)

    Google Scholar 

  27. Ren, Z., Lei, H., Sun, Q., Yang, C.: Simultaneous learning coefficient matrix and affinity graph for multiple kernel clustering. Inf. Sci. 547, 289–306 (2021)

    Article  MathSciNet  Google Scholar 

  28. Ren, Z., Li, H., Yang, C., Sun, Q.: Multiple kernel subspace clustering with local structural graph and low-rank consensus kernel learning. Knowl. Based Syst. 188 (2020)

    Google Scholar 

  29. Shi, X., Guo, Z., **ng, F., Cai, J., Yang, L.: Self-learning for face clustering. Pattern Recognit. 79, 279–289 (2018)

    Article  Google Scholar 

  30. Wang, L., Huang, J., Yin, M., Cai, R., Hao, Z.: Block diagonal representation learning for robust subspace clustering. Inf. Sci. 526, 54–67 (2020)

    Article  MathSciNet  Google Scholar 

  31. **ao, S., Tan, M., Xu, D.: weighted block-sparse low rank representation for face clustering in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 123–138. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_9

    Chapter  Google Scholar 

  32. **ao, S., Tan, M., Xu, D., Dong, Z.Y.: Robust kernel low-rank representation. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2268–2281 (2016)

    Article  MathSciNet  Google Scholar 

  33. Xu, Z., **, R., King, I., Lyu, M.R.: An extended level method for efficient multiple kernel learning. In: Advances in Neural Information Processing Systems 21, pp. 1825–1832. Curran Associates, Inc. (2008)

    Google Scholar 

  34. Xu, Z., **, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple kernel learning by group lasso. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML 2010), 21–24 June 2010, Haifa, Israel, pp. 1175–1182. Omnipress (2010)

    Google Scholar 

  35. Yang, C., Ren, Z., Sun, Q., Wu, M., Yin, M., Sun, Y.: Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering. Inf. Sci. 500, 48–66 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhang, D., et al.: Supporting clustering with contrastive learning. In: NAACL-HLT, pp. 5419–5430. Association for Computational Linguistics (2021)

    Google Scholar 

  37. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: ICCV, pp. 471–478. IEEE Computer Society (2011)

    Google Scholar 

  38. Zhen, L., Peng, D., Wang, W., Yao, X.: Kernel truncated regression representation for robust subspace clustering. Inf. Sci. 524, 59–76 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Kang, Z., Xu, Z., Fu, H. (2024). Contrastive Kernel Subspace Clustering. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14451. Springer, Singapore. https://doi.org/10.1007/978-981-99-8073-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8073-4_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8072-7

  • Online ISBN: 978-981-99-8073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation