• 130 Accesses

Abstract

Random signals arise in all fields of science and engineering. Measurements of all physical variables are never perfect, and the imperfections can be viewed as random noise. Thus, measurement of any variable over time results in a random signal. If the measurement is analog, then the signal is continuous, and if digital then the signal is discrete. Random signals are also known as stochastic processes or random processes. In the discrete-time case, they are called time series. This chapter provides an introduction to the mathematical tools needed to handle random signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Brown, R. G., & Hwang, P. Y. C. (1997). Introduction to random signals and applied Kalman filtering (3ed.). Wiley.

    Google Scholar 

  2. Cooper, G. R., & McGillem, C. D. (1999). Probabilistic methods of signal and system analysis. Oxford Univ. Press.

    Google Scholar 

  3. Moon, T. K., & Sterling, W. C. (2000). Mathematical methods and algorithms for signal processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Oppenheim, A. V., & Verghese, G. C. (2016). Mathematical methods and algorithms for signal processing. Pearson.

    Google Scholar 

  5. Oppenheim, A. V., Willsky, A. S., & Nawab, H. (1997). Signals and systems. Prentice-Hall.

    Google Scholar 

  6. Papoulis, A., & Pillai, S. U. (2002). Signals, systems and inference. Pearson.

    Google Scholar 

  7. Peebles, P. Z. (1993). Probability, random variables, and random signal principles (pp. 253–261). McGraw Hill.

    Google Scholar 

  8. Shanmugan, K. S., & Breipohl, A. M. (1988). Detection, estimation & data analysis (pp. 132–134). Wiley.

    Google Scholar 

  9. Stark, H., & Woods, J. W. (2002). Probability and random processes with applications to signal processing. Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sami Fadali .

Appendix 3.1 Brief Review of the Two-Sided Z-Transform

Appendix 3.1 Brief Review of the Two-Sided Z-Transform

This section provides a brief review of the two-sided z-transform.

The two-sided z-Transform of sequence

$$\left \{ {G\left( k \right)} \right\} = \left\{ { \ldots ,G\left( { - 1} \right), G\left( 0 \right), \ldots , G\left( i \right), \ldots } \right\}$$

is defined as

$${\varvec{G}}\left( z \right) = \cdots + G\left( { - 1} \right)z^{1} + G\left( 0 \right) + \cdots + G\left( i \right)z^{ - i} + \cdots ,$$

where \(z\) is a time advance operator. It is also possible to define the z-transform using the Laplace transform, the delay theorem for Laplace transforms, and with the definition of \(z = {\text{e}}^{sT}\), where \(T\) is the sampling period. With the second definition, the z-transform inherits some properties of the Laplace transform. In particular, the z-transform is a linear transform.

  • Linear:

$${\mathcal{Z}}\left\{ {a{\varvec{f}}\left( k \right) + b{\varvec{g}}\left( k \right)} \right\} = a{\varvec{F}}\left( z \right) + b{\varvec{G}}\left( z \right).$$

Convolution Theorem

The z-transform of the convolution of two sequences is the product of their transforms

$${\mathcal{Z}}\left\{ {\mathop \sum \limits_{i = - \infty }^{\infty } G\left( {k - i} \right){\varvec{f}}\left( i \right)} \right\} = {\varvec{G}}\left( z \right){\varvec{F}}\left( z \right),$$
$$\left\{ {{\varvec{f}}\left( k \right)} \right\} = \left\{ { \ldots ,{\varvec{f}}\left( { - 1} \right),{\varvec{f}}\left( 0 \right), \ldots , {\varvec{f}}\left( i \right), \ldots } \right\}.$$

Response of DT System

The response of linear system to any input sequence \(\left\{ {{\varvec{f}}\left( k \right)} \right\}\) is the convolution summation of the input and the impulse response sequence

$${\varvec{x}}\left( k \right) = \mathop \sum \limits_{i = - \infty }^{\infty } G\left( i \right){\varvec{f}}\left( {k - i} \right) = \mathop \sum \limits_{i = - \infty }^{\infty } G\left( {k - i} \right){\varvec{f}}\left( i \right).$$

By the convolution theorem, the z-transform of the response is the product

$${\varvec{X}}\left( {\varvec{z}} \right) = {\varvec{G}}\left( {\varvec{z}} \right){\varvec{F}}\left( {\varvec{z}} \right),\user2{ G}\left( {\varvec{z}} \right) = \mathop \sum \limits_{{{\varvec{i}} = - \infty }}^{\infty } {\varvec{G}}\left( {\varvec{i}} \right){\varvec{z}}^{{ - {\varvec{i}}}} .$$

The impulse response sequence and the z-transfer function are z-transform pairs

$$\begin{array}{*{20}c} {G\left( i \right)} \\ {{\text{impulse response}}} \\ \end{array} \mathop \leftrightarrow \limits^{{\quad \quad \rm{\mathcal{Z}}\quad \quad }} \begin{array}{*{20}c} {\user2{G}\left( z \right)} \\ {{\text{transfer function}}} \\ \end{array} .$$

Even Function

For an even function \(G\left( n \right) = G\left( { - n} \right)\), the z-transform satisfies

$${\varvec{G}}\left( {\varvec{z}} \right) = \mathop \sum \limits_{{{\varvec{m}} = - \infty }}^{\infty } {\varvec{G}}\left( {\varvec{m}} \right){\varvec{z}}^{{ - {\varvec{m}}}} = \mathop \sum \limits_{{{\varvec{m}} = - \infty }}^{\infty } {\varvec{G}}\left( { - {\varvec{m}}} \right){\varvec{z}}^{{ - {\varvec{m}}}} .$$

Substituting \(l = - m\) gives

$${\varvec{G}}\left( {\varvec{z}} \right) = \mathop \sum \limits_{{{\varvec{l}} = - \infty }}^{\infty } {\varvec{G}}\left( {\varvec{l}} \right){\varvec{z}}^{{\varvec{l}}} = {\varvec{G}}\left( {{\varvec{z}}^{{ - {\mathbf{1}}}} } \right),$$

that is,

$${\varvec{G}}\left( z \right) = {\varvec{G}}\left( {z^{ - 1} } \right).$$

Hence, poles are located symmetrically w.r.t. the unit circle.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fadali, M.S. (2024). Random Signals. In: Introduction to Random Signals, Estimation Theory, and Kalman Filtering. Springer, Singapore. https://doi.org/10.1007/978-981-99-8063-5_3

Download citation

Publish with us

Policies and ethics

Navigation