Subretinal/Submacular Haemorrhage

  • Chapter
  • First Online:
Ophthalmic Signs in Practice of Medicine
  • 192 Accesses

Abstract

Haemorrhage under the neurosensory retina or the retinal pigment epithelium in the macula is a sight-threatening condition. It is a significant public health concern in the ageing population the world over. The varying severity of haemorrhage from the rupture of the new vessels of choroidal origin compromises central vision that may go unnoticed in the first eye. Two distinct variants are seen. Stigmata of age-related macular degeneration (AMD) in the form of drusen and pigmentary changes accompany bilateral disease in the Caucasian population. In contrast, the one in the Asian population often presents with unilateral features and can become bilateral lateris characterized by a network of vessels and the formation of polyps under the RPE that cause massive haemorrhagic pigment epithelial detachments (polypoidal choroidal vasculopathy, PCV). Moreover, AMD is characterized by age-related thinning of choroid and ischemia, while PCV has a thick and hyperpermeable choroid.

There is evidence that polymorphisms in the alternate complement pathways lead to low-grade inflammation and interfere with the debris removal pathways. Smoking, a strong epigenetic factor, increasesthe risk of age-related macular degeneration several folds in genetically predisposed individuals. Imaging techniques such as OCT, OCT angiography, FA, and ICG can detect the earliest asymptomatic stages of the new vessels and minimize vision loss by appropriate use of anti-VEGF injections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, Waheed NK, Chakravarthy U, Rosenfeld PJ, Holz FG, Souied EH, Cohen SY, Querques G, Ohno-Matsui K, Boyer D, Gaudric A, Blodi B, Baumal CR, Li X, Coscas GJ, Brucker A, Singerman L, Luthert P, Schmitz-Valckenberg S, Schmidt-Erfurth U, Grossniklaus HE, Wilson DJ, Guymer R, Yannuzzi LA, Chew EY, Csaky K, Monés JM, Pauleikhoff D, Tadayoni R, Fujimoto J. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology. 2020;127(5):616–36. https://doi.org/10.1016/j.ophtha.2019.11.004. Epub 2019 Nov 14. Erratum in: Ophthalmology. 2020 Oct;127(10):1434-1435. PMID: 31864668.

    Article  PubMed  Google Scholar 

  2. van Leeuwen R, Chakravarthy U, Vingerling JR, Brussee C, Hooghart AJ, Mulder PG, de Jong PT. Grading of age-related maculopathy for epidemiological studies: is digital imaging as good as 35-mm film? Ophthalmology. 2003;110(8):1540–4. https://doi.org/10.1016/S0161-6420(03)00501-3. PMID: 12917169.

    Article  PubMed  Google Scholar 

  3. Colijn JM, Buitendijk GHS, Prokofyeva E, Alves D, Cachulo ML, Khawaja AP, Cougnard-Gregoire A, Merle BMJ, Korb C, Erke MG, Bron A, Anastasopoulos E, Meester-Smoor MA, Segato T, Piermarocchi S, de Jong PTVM, Vingerling JR, Topouzis F, Creuzot-Garcher C, Bertelsen G, Pfeiffer N, Fletcher AE, Foster PJ, Silva R, Korobelnik JF, Delcourt C, Klaver CCW, EYE-RISK Consortium; European Eye Epidemiology (E3) Consortium. Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology. 2017;124(12):1753–63. https://doi.org/10.1016/j.ophtha.2017.05.035. Epub 2017 Jul 14. PMID: 28712657; PMCID: PMC5755466.

    Article  PubMed  Google Scholar 

  4. Li JQ, Welchowski T, Schmid M, Mauschitz MM, Holz FG, Finger RP. Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis. Br J Ophthalmol. 2020;104(8):1077–84. https://doi.org/10.1136/bjophthalmol-2019-314422. Epub 2019 Nov 11. PMID: 31712255.

    Article  PubMed  Google Scholar 

  5. Mauschitz MM, Finger RP. Age-related macular degeneration and cardiovascular diseases: revisiting the common soil theory. Asia Pac J Ophthalmol (Phila). 2022;11(2):94–9. https://doi.org/10.1097/APO.0000000000000496. Epub 2022 Feb 23. PMID: 35213420.

    Article  CAS  PubMed  Google Scholar 

  6. Merle BMJ, Colijn JM, Cougnard-Grégoire A, de Koning-Backus APM, Delyfer MN, Kiefte-de Jong JC, Meester-Smoor M, Féart C, Verzijden T, Samieri C, Franco OH, Korobelnik JF, Klaver CCW, Delcourt C, EYE-RISK Consortium. Mediterranean diet and incidence of advanced age-related macular degeneration: the EYE-RISK consortium. Ophthalmology. 2019;126(3):381–90. https://doi.org/10.1016/j.ophtha.2018.08.006. Epub 2018 Aug 13. PMID: 30114418.

    Article  PubMed  Google Scholar 

  7. Mauschitz MM, Schmitz MT, Verzijden T, Schmid M, Thee EF, Colijn JM, Delcourt C, Cougnard-Grégoire A, Merle BMJ, Korobelnik JF, Gopinath B, Mitchell P, Elbaz H, Schuster AK, Wild PS, Brandl C, Stark KJ, Heid IM, Günther F, Peters A, Klaver CCW, Finger RP, European Eye Epidemiology (E3) Consortium. Physical activity, incidence, and progression of age-related macular degeneration: a multicohort study. Am J Ophthalmol. 2022;236:99–106. https://doi.org/10.1016/j.ajo.2021.10.008. Epub 2021 Oct 22. PMID: 34695401.

    Article  PubMed  Google Scholar 

  8. Fernandez AB, Ballard KD, Wong TY, Guo M, McClelland RL, Burke G, Cotch MF, Klein B, Allison M, Klein R. Age-related macular degeneration and progression of coronary artery calcium: the multi-ethnic study of atherosclerosis. PLoS One. 2018;13(7):e0201000. https://doi.org/10.1371/journal.pone.0201000. PMID: 30020999; PMCID: PMC6051657.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ikram MK, Mitchell P, Klein R, Sharrett AR, Couper DJ, Wong TY. Age-related macular degeneration and long-term risk of stroke subtypes. Stroke. 2012;43(6):1681–3. https://doi.org/10.1161/STROKEAHA.112.654632. Epub 2012 Apr 24. PMID: 22535267; PMCID: PMC3361598.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Rickman CB, Bok D, Hageman GS, Johnson LV. The pivotal role of the complement system in ageing and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29(2):95–112. https://doi.org/10.1016/j.preteyeres.2009.11.003. Epub 2009 Dec 2. PMID: 19961953; PMCID: PMC3641842.

    Article  CAS  PubMed  Google Scholar 

  11. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421–4. https://doi.org/10.1126/science.1110189. Epub 2005 Mar 10. PMID: 15761121.

    Article  CAS  PubMed  Google Scholar 

  12. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21. https://doi.org/10.1126/science.1110359. Epub 2005 Mar 10. PMID: 1576112.

    Article  CAS  PubMed  Google Scholar 

  13. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9. https://doi.org/10.1126/science.1109557. Epub 2005 Mar 10. PMID: 15761122; PMCID: PMC1512523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seddon JM, Francis PJ, George S, Schultz DW, Rosner B, Klein ML. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA. 2007;297(16):1793–800. https://doi.org/10.1001/jama.297.16.1793. Erratum in: JAMA (2007) 297(23):2585. PMID: 1745682.

    Article  CAS  PubMed  Google Scholar 

  15. Strunz T, Kiel C, Sauerbeck BL, Weber BHF. Learning from fifteen years of genome-wide association studies in age-related macular degeneration. Cells. 2020;9(10):2267. https://doi.org/10.3390/cells9102267. PMID: 33050425; PMCID: PMC7650698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Micklisch S, Lin Y, Jacob S, et al. Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. J Neuroinflammation. 2017;14:4. https://doi.org/10.1186/s12974-016-0776-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rozing MP, Durhuus JA, Krogh Nielsen M, Subhi Y, Kirkwood TB, Westendorp RG, Sørensen TL. Age-related macular degeneration: a two-level model hypothesis. Prog Retin Eye Res. 2020;76:100825. https://doi.org/10.1016/j.preteyeres.2019.100825. Epub 2019 Dec 30. PMID: 31899290.

    Article  PubMed  Google Scholar 

  18. Spaide RF, Ooto S, Curcio CA. Subretinal drusenoid deposits AKA pseudodrusen. Surv Ophthalmol. 2018;63(6):782–815. https://doi.org/10.1016/j.survophthal.2018.05.005. Epub 2018 May 31. PMID: 29859199.

    Article  PubMed  Google Scholar 

  19. Nassisi M, Tepelus T, Nittala MG, Sadda SR. Choriocapillaris flow impairment predicts the development and enlargement of drusen. Graefes Arch Clin Exp Ophthalmol. 2019;257(10):2079–85. https://doi.org/10.1007/s00417-019-04403-1. Epub 2019 Jul 1. PMID: 31263948.

    Article  PubMed  Google Scholar 

  20. Gass JD. Drusen and disciform macular detachment and degeneration. Trans Am Ophthalmol Soc. 1972;70:409–36. PMID: 4663679; PMCID: PMC1310465.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gass JD, Agarwal A, Lavina AM, Tawansy KA. Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina. 2003;23(6):741–51. https://doi.org/10.1097/00006982-200312000-00001. PMID: 14707822.

    Article  PubMed  Google Scholar 

  22. Soubrane G, Coscas G. Discussion. Ophthalmology. 2000;107(4):753–4. https://doi.org/10.1016/S0161-6420(00)00010-5.

    Article  Google Scholar 

  23. Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N. Retinal angiomatous proliferation in age-related macular degeneration. Retina. 2001;21(5):416–34. https://doi.org/10.1097/00006982-200110000-00003. PMID: 11642370.

    Article  CAS  PubMed  Google Scholar 

  24. Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223. PMID: 1384094.

    Article  CAS  PubMed  Google Scholar 

  25. Hanutsaha P, Guyer DR, Yannuzzi LA, Naing A, Slakter JS, Sorenson JS, Spaide RF, Freund KB, Feinsod M, Orlock DA. Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy. Ophthalmology. 1998;105(9):1632–6. https://doi.org/10.1016/S0161-6420(98)99030-3. PMID: 9754169.

    Article  CAS  PubMed  Google Scholar 

  26. de Oliveira Dias JR, Zhang Q, Garcia JMB, Zheng F, Motulsky EH, Roisman L, Miller A, Chen CL, Kubach S, de Sisternes L, Durbin MK, Feuer W, Wang RK, Gregori G, Rosenfeld PJ. Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography. Ophthalmology. 2018;125(2):255–66. https://doi.org/10.1016/j.ophtha.2017.08.030. Epub 2017 Sep 28. PMID: 28964581.

    Article  PubMed  Google Scholar 

  27. Sharma A, Cheung CMG, Arias-Barquet L, Ozdek S, Parachuri N, Kumar N, Hilely A, Zur D, Loewenstein A, Vella G, Bandello F, Querques G. Fluid-based visual prognostication in type 3 macular neovascularization-flip-3 study. Retina. 2022;42(1):107–13. https://doi.org/10.1097/IAE.0000000000003261. PMID: 34255761.

    Article  CAS  PubMed  Google Scholar 

  28. Kleiner RC, Brucker AJ, Johnston RL. The posterior uveal bleeding syndrome. Retina. 1990;10(1):9–17. PMID: 2343198.

    Article  CAS  PubMed  Google Scholar 

  29. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10(1):1–8. PMID: 1693009.

    Article  CAS  PubMed  Google Scholar 

  30. Uyama M, Wada M, Nagai Y, Matsubara T, Matsunaga H, Fukushima I, Takahashi K, Matsumura M. Polypoidal choroidal vasculopathy: natural history. Am J Ophthalmol. 2002;133(5):639–48. https://doi.org/10.1016/s0002-9394(02)01404-6. PMID: 11992861.

    Article  PubMed  Google Scholar 

  31. Sho K, Takahashi K, Yamada H, Wada M, Nagai Y, Otsuji T, Nishikawa M, Mitsuma Y, Yamazaki Y, Matsumura M, Uyama M. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol. 2003;121(10):1392–6. https://doi.org/10.1001/archopht.121.10.1392. PMID: 14557174.

    Article  PubMed  Google Scholar 

  32. Yannuzzi LA, Ciardella A, Spaide RF, Rabb M, Freund KB, Orlock DA. The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol. 1997;115(4):478–85. https://doi.org/10.1001/archopht.1997.01100150480005. PMID: 9109756.

    Article  CAS  PubMed  Google Scholar 

  33. Corvi F, Chandra S, Invernizzi A, Pace L, Viola F, Sivaprasad S, Staurenghi G, Cheung CMG, Teo KYC. Multimodal imaging comparison of polypoidal choroidal vasculopathy between Asian and Caucasian populations. Am J Ophthalmol. 2022;234:108–16. https://doi.org/10.1016/j.ajo.2021.08.006. Epub 2021 Aug 24. PMID: 34450112.

    Article  PubMed  Google Scholar 

  34. Tsujikawa A, Sasahara M, Otani A, Gotoh N, Kameda T, Iwama D, Yodoi Y, Tamura H, Mandai M, Yoshimura N. Pigment epithelial detachment in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2007;143(1):102–11. https://doi.org/10.1016/j.ajo.2006.08.025. Epub 2006 Sep 28. PMID: 17101112.

    Article  PubMed  Google Scholar 

  35. Kramer M, Mimouni K, Priel E, Yassur Y, Weinberger D. Comparison of fluorescein angiography and indocyanine green angiography for imaging of choroidal neovascularization in hemorrhagic age-related macular degeneration. Am J Ophthalmol. 2000;129(4):495–500. https://doi.org/10.1016/s0002-9394(99)00388-8. PMID: 10764859.

    Article  CAS  PubMed  Google Scholar 

  36. Tan CS, Ngo WK, Lim LW, Tan NW, Lim TH. EVEREST study report 4: fluorescein angiography features predictive of polypoidal choroidal vasculopathy. Clin Exp Ophthalmol. 2019;47(5):614–20. https://doi.org/10.1111/ceo.13464. Epub 2019 Feb 10. PMID: 30652395; PMCID: PMC6767036.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cheung CMG, Lai TYY, Ruamviboonsuk P, Chen SJ, Chen Y, Freund KB, Gomi F, Koh AH, Lee WK, Wong TY. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management. Ophthalmology. 2018;125(5):708–24. https://doi.org/10.1016/j.ophtha.2017.11.019. Epub 2018 Jan 10. PMID: 29331556.

    Article  PubMed  Google Scholar 

  38. Takayama K, Ito Y, Kaneko H, Kataoka K, Sugita T, Maruko R, Hattori K, Ra E, Haga F, Terasaki H. Comparison of indocyanine green angiography and optical coherence tomographic angiography in polypoidal choroidal vasculopathy. Eye (Lond). 2017;31(1):45–52. https://doi.org/10.1038/eye.2016.232. Epub 2016 Nov 4. PMID: 27813526; PMCID: PMC5233943.

    Article  CAS  PubMed  Google Scholar 

  39. Izumi T, Koizumi H, Maruko I, Hasegawa T, Iida T. Optical coherence tomography angiography findings of classic choroidal neovascularization in polypoidal choroidal vasculopathy. Retina. 2022;42(1):123–8. https://doi.org/10.1097/IAE.0000000000003264. PMID: 34292224.

    Article  CAS  PubMed  Google Scholar 

  40. Ma ST, Huang CH, Chang YC, Lai TT, Hsieh YT, Ho TC, Yang CM, Cheng CG, Yang CH. Clinical features and prognosis of polypoidal choroidal vasculopathy with different morphologies of branching vascular network on optical coherence tomography angiography. Sci Rep. 2021;11(1):17848. https://doi.org/10.1038/s41598-021-97340-1. PMID: 34497317; PMCID: PMC8426494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamagishi T, Koizumi H, Yamazaki T, Kinoshita S. Fundus autofluorescence in polypoidal choroidal vasculopathy. Ophthalmology. 2012;119(8):1650–7. https://doi.org/10.1016/j.ophtha.2012.02.016. Epub 2012 Apr 17. PMID: 22512987.

    Article  PubMed  Google Scholar 

  42. Tso MOM, Suarez MJ, Eberhart CG. Pathologic study of early manifestations of polypoidal choroidal vasculopathy and pathogenesis of choroidal neo-vascularization. Am J Ophthalmol Case Rep. 2017;11:176–80. https://doi.org/10.1016/j.ajoc.2017.10.012. PMID: 30128371; PMCID: PMC6097175.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lafaut BA, Aisenbrey S, Van den Broecke C, Bartz-Schmidt KU, Heimann K. Polypoidal choroidal vasculopathy pattern in age-related macular degeneration: a clinicopathologic correlation. Retina. 2000;20(6):650–4. https://doi.org/10.1097/00006982-200011000-00010. PMID: 11131419.

    Article  CAS  PubMed  Google Scholar 

  44. Liu G, Han L, Lu Y, Wang C, Ma L, Zhang P, Liu C, Lu X, Ma Z. Clinicopathological study of the polypoidal lesions of polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2022;260(7):2369–77. https://doi.org/10.1007/s00417-021-05525-1. Epub 2022 Feb 11. PMID: 35147748.

    Article  CAS  PubMed  Google Scholar 

  45. Matsuoka M, Ogata N, Otsuji T, Nishimura T, Takahashi K, Matsumura M. Expression of pigment epithelium derived factor and vascular endothelial growth factor in choroidal neovascular membranes and polypoidal choroidal vasculopathy. Br J Ophthalmol. 2004;88(6):809–15. https://doi.org/10.1136/bjo.2003.032466. PMID: 15148217; PMCID: PMC1772169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baek J, Kim JH, Lee MY, Lee WK. Disease activity after development of large subretinal hemorrhage in polypoidal choroidal vasculopathy. Retina. 2018;38(10):1993–2000. https://doi.org/10.1097/IAE.0000000000001817. PMID: 28834950.

    Article  PubMed  Google Scholar 

  47. Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118(5):840–5. https://doi.org/10.1016/j.ophtha.2010.09.012. Epub 2011 Jan 6. PMID: 21211846.

    Article  PubMed  Google Scholar 

  48. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015;35(1):1–9. https://doi.org/10.1097/IAE.0000000000000331. PMID: 25158945.

    Article  CAS  PubMed  Google Scholar 

  49. Wang TA, Chan WC, Tsai SH, et al. Clinical features of pachyvessels associated with polypoidal choroidal vasculopathy in chronic central serous chorioretinopathy. Sci Rep. 2021;11:13867. https://doi.org/10.1038/s41598-021-93476-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33(8):1659–72. https://doi.org/10.1097/IAE.0b013e3182953df4. PMID: 23751942.

    Article  PubMed  Google Scholar 

  51. Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol. 2015;160(6):1243–1254.e2. https://doi.org/10.1016/j.ajo.2015.08.028. Epub 2015 Aug 28. PMID: 26319161.

    Article  PubMed  Google Scholar 

  52. Shen M, Zhou H, Kim K, Bo Q, Lu J, Laiginhas R, Jiang X, Yan Q, Iyer P, Trivizki O, Shi Y, de Sisternes L, Durbin MK, Feuer W, Gregori G, Wang RK, Sun X, Wang F, Yu SY, Rosenfeld PJ. Choroidal changes in eyes with polypoidal choroidal vasculopathy after anti-VEGF therapy imaged with swept-source OCT angiography. Invest Ophthalmol Vis Sci. 2021;62(15):5. https://doi.org/10.1167/iovs.62.15.5. PMID: 34860239; PMCID: PMC8648060.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ma L, Li Z, Liu K, Rong SS, Brelen ME, Young AL, Kumaramanickavel G, Pang CP, Chen H, Chen LJ. Association of genetic variants with polypoidal choroidal vasculopathy: a systematic review and updated meta-analysis. Ophthalmology. 2015;122(9):1854–65. https://doi.org/10.1016/j.ophtha.2015.05.012. Epub 2015 Jun 13. PMID: 26081444.

    Article  PubMed  Google Scholar 

  54. Gemmy Cheung CM, Yeo I, Li X, Mathur R, Lee SY, Chan CM, Wong D, Wong TY. Argon laser with and without anti-vascular endothelial growth factor therapy for extrafoveal polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013;155(2):295–304.e1. https://doi.org/10.1016/j.ajo.2012.08.002. Epub 2012 Oct 27. PMID: 23111181.

    Article  PubMed  Google Scholar 

  55. Wong CW, Cheung CM, Mathur R, Li X, Chan CM, Yeo I, Wong E, Lee SY, Wong D, Wong TY. Three-year results of polypoidal choroidal vasculopathy treated with photodynamic therapy: retrospective study and systematic review. Retina. 2015;35(8):1577–93. https://doi.org/10.1097/IAE.0000000000000499. PMID: 25719986.

    Article  PubMed  Google Scholar 

  56. Kim SW, Oh J, Oh IK, Huh K. Retinal pigment epithelial tear after half fluence PDT for serous pigment epithelial detachment in central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging. 2009;40(3):300–3. https://doi.org/10.3928/15428877-20090430-14. PMID: 19485297.

    Article  CAS  PubMed  Google Scholar 

  57. Klais CM, Ober MD, Freund KB, Ginsburg LH, Luckie A, Mauget-Faÿsse M, Coscas G, Gross NE, Yannuzzi LA. Choroidal infarction following photodynamic therapy with verteporfin. Arch Ophthalmol. 2005;123(8):1149–53. https://doi.org/10.1001/archopht.123.8.1149. PMID: 16087856.

    Article  PubMed  Google Scholar 

  58. Lee WK, Iida T, Ogura Y, Chen SJ, Wong TY, Mitchell P, Cheung GCM, Zhang Z, Leal S, Ishibashi T, PLANET Investigators. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET study: a randomized clinical trial. JAMA Ophthalmol. 2018;136(7):786–93. https://doi.org/10.1001/jamaophthalmol.2018.1804. Erratum in: JAMA Ophthalmol. 2018 Jul 1;136(7):840. PMID: 29801063; PMCID: PMC6136040.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ogura Y, Jaffe GJ, Cheung CMG, Kokame GT, Iida T, Takahashi K, Lee WK, Chang AA, Monés J, D’Souza D, Weissgerber G, Gedif K, Koh A. Efficacy and safety of brolucizumab versus aflibercept in eyes with polypoidal choroidal vasculopathy in Japanese participants of HAWK. Br J Ophthalmol. 2022;106(7):994–9. https://doi.org/10.1136/bjophthalmol-2021-319090. Epub 2021 Jul 22. PMID: 34301613; PMCID: PMC9234403.

    Article  PubMed  Google Scholar 

  60. Yanagi Y, Ting DSW, Ng WY, Lee SY, Mathur R, Chan CM, Yeo I, Wong TY, Cheung GCM. Choroidal vascular hyperpermeability as a predictor of treatment response for polypoidal choroidal vasculopathy. Retina. 2018;38(8):1509–17. https://doi.org/10.1097/IAE.0000000000001758. PMID: 28704255.

    Article  PubMed  Google Scholar 

  61. Kim H, Lee SC, Kwon KY, Lee JH, Koh HJ, Byeon SH, Kim SS, Kim M, Lee CS. Subfoveal choroidal thickness as a predictor of treatment response to anti-vascular endothelial growth factor therapy for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(8):1497–503. https://doi.org/10.1007/s00417-015-3221-x. Epub 2015 Dec 1. PMID: 26626772.

    Article  CAS  PubMed  Google Scholar 

  62. Cho SC, Cho J, Park KH, Woo SJ. Massive submacular hemorrhage in polypoidal choroidal vasculopathy versus typical neovascular age-related macular degeneration. Acta Ophthalmol. 2021;99(5):e706–14. https://doi.org/10.1111/aos.14676. Epub 2020 Dec 2. PMID: 33289345.

    Article  PubMed  Google Scholar 

  63. Cho JH, Ryoo NK, Cho KH, Park SJ, Park KH, Woo SJ. Incidence rate of massive submacular hemorrhage and its risk factors in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2016;169:79–88. https://doi.org/10.1016/j.ajo.2016.06.014. Epub 2016 Jun 16. PMID: 27318076.

    Article  PubMed  Google Scholar 

  64. Heriot W. Intravitreal gas and tPA: an outpatient procedure for subretinal haemorrhage. In: Vail vitrectomy meeting; 1996; Vail, CO.

    Google Scholar 

  65. Coll GE, Sparrow JR, Marinovic A, Chang S. Effect of intravitreal tissue plasminogen activator on experimental subretinal hemorrhage. Retina. 1995;15(4):319–26. https://doi.org/10.1097/00006982-199515040-00009. PMID: 8545578.

    Article  CAS  PubMed  Google Scholar 

  66. Boone DE, Boldt HC, Ross RD, Folk JC, Kimura AE. The use of intravitreal tissue plasminogen activator in the treatment of experimental subretinal hemorrhage in the pig model. Retina. 1996;16(6):518–24. https://doi.org/10.1097/00006982-199616060-00009. PMID: 9002136.

    Article  CAS  PubMed  Google Scholar 

  67. Johnson MW, Olsen KR, Hernandez E. Tissue plasminogen activator treatment of experimental subretinal hemorrhage. Retina. 1991;11(2):250–8. https://doi.org/10.1097/00006982-199111020-00011. PMID: 1925092.

    Article  CAS  PubMed  Google Scholar 

  68. Hassan AS, Johnson MW, Schneiderman TE, Regillo CD, Tornambe PE, Poliner LS, Blodi BA, Elner SG. Management of submacular hemorrhage with intravitreous tissue plasminogen activator injection and pneumatic displacement. Ophthalmology. 1999;106(10):1900–6; discussion 1906–7. PMID: 10519583. https://doi.org/10.1016/S0161-6420(99)90399-8.

    Article  CAS  PubMed  Google Scholar 

  69. Chen CY, Hooper C, Chiu D, Chamberlain M, Karia N, Heriot WJ. Management of submacular hemorrhage with intravitreal injection of tissue plasminogen activator and expansile gas. Retina. 2007;27(3):321–8. https://doi.org/10.1097/01.iae.0000237586.48231.75. PMID: 17460587.

    Article  PubMed  Google Scholar 

  70. Kadonosono K, Arakawa A, Yamane S, Inoue M, Yamakawa T, Uchio E, Yanagi Y. Displacement of submacular hemorrhages in age-related macular degeneration with subretinal tissue plasminogen activator and air. Ophthalmology. 2015;122(1):123–8. https://doi.org/10.1016/j.ophtha.2014.07.027. Epub 2014 Sep 4. PMID: 25200400.

    Article  PubMed  Google Scholar 

  71. Sharma S, Kumar JB, Kim JE, Thordsen J, Dayani P, Ober M, Mahmoud TH. Pneumatic displacement of submacular hemorrhage with subretinal air and tissue plasminogen activator: initial United States experience. Ophthalmol Retina. 2018;2(3):180–6. https://doi.org/10.1016/j.oret.2017.07.012. Epub 2017 Sep 28. PMID: 31047581.

    Article  PubMed  Google Scholar 

  72. Chakraborty D, Sheth JU, Mondal S, Boral S. Role of intravitreal brolucizumab with intravitreal rtPA and pneumatic displacement for submacular hemorrhage: a case series. Am J Ophthalmol Case Rep. 2022;25:101390. https://doi.org/10.1016/j.ajoc.2022.101390. PMID: 35198814; PMCID: PMC8841994.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guthoff R, Guthoff T, Meigen T, Goebel W. Intravitreous injection of bevacizumab, tissue plasminogen activator, and gas in the treatment of submacular hemorrhage in age-related macular degeneration. Retina. 2011;31(1):36–40. https://doi.org/10.1097/IAE.0b013e3181e37884. PMID: 20921929.

    Article  CAS  PubMed  Google Scholar 

  74. Klettner A, Puls S, Treumer F, Roider J, Hillenkamp J. Compatibility of recombinant tissue plasminogen activator and bevacizumab co-applied for neovascular age-related macular degeneration with submacular hemorrhage. Arch Ophthalmol. 2012;130(7):875–81. https://doi.org/10.1001/archophthalmol.2012.120. PMID: 22410628.

    Article  CAS  PubMed  Google Scholar 

  75. Hillenkamp J, Surguch V, Framme C, Gabel VP, Sachs HG. Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):5–11. https://doi.org/10.1007/s00417-009-1158-7. Epub 2009 Aug 11. PMID: 19669780.

    Article  CAS  PubMed  Google Scholar 

  76. Kimura S, Morizane Y, Hosokawa M, Shiode Y, Kawata T, Doi S, Matoba R, Hosogi M, Fujiwara A, Inoue Y, Shiraga F. Submacular hemorrhage in polypoidal choroidal vasculopathy treated by vitrectomy and subretinal tissue plasminogen activator. Am J Ophthalmol. 2015;159(4):683–9. https://doi.org/10.1016/j.ajo.2014.12.020. Epub 2014 Dec 30. PMID: 25555798.

    Article  CAS  PubMed  Google Scholar 

  77. van Zeeburg EJ, van Meurs JC. Literature review of recombinant tissue plasminogen activator used for recent-onset submacular hemorrhage displacement in age-related macular degeneration. Ophthalmologica. 2013;229(1):1–14. https://doi.org/10.1159/000343066. Epub 2012 Oct 12. PMID: 23075629.

    Article  CAS  PubMed  Google Scholar 

  78. de Jong JH, van Zeeburg EJ, Cereda MG, van Velthoven ME, Faridpooya K, Vermeer KA, van Meurs JC. Intravitreal versus subretinal administration of recombinant tissue plasminogen activator combined with gas for acute submacular hemorrhages due to age-related macular degeneration: an exploratory prospective study. Retina. 2016;36(5):914–25. https://doi.org/10.1097/IAE.0000000000000954. PMID: 26807631.

    Article  CAS  PubMed  Google Scholar 

  79. Grohmann C, Dimopoulos S, Bartz-Schmidt KU, Schindler P, Katz T, Spitzer MS, Skevas C. Surgical management of submacular hemorrhage due to n-AMD: a comparison of three surgical methods. Int J Retina Vitreous. 2020;6:27. https://doi.org/10.1186/s40942-020-00228-x. PMID: 32637155; PMCID: PMC7331168.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iglicki M, Khoury M, Melamud JI, Donato L, Barak A, Quispe DJ, Zur D, Loewenstein A. Naïve subretinal haemorrhage due to neovascular age-related macular degeneration. Pneumatic displacement, subretinal air, and tissue plasminogen activator: subretinal vs intravitreal aflibercept-the native study. Eye (Lond). 2023;37:1659. https://doi.org/10.1038/s41433-022-02222-z. Epub ahead of print. PMID: 36038720.

    Article  CAS  PubMed  Google Scholar 

  81. Erdogan G, Kirmaci A, Perente I, Artunay O. Gravitational displacement of submacular haemorrhage in patients with age-related macular disease. Eye (Lond). 2020;34(6):1136–41. https://doi.org/10.1038/s41433-019-0720-8. Epub 2019 Dec 2. PMID: 31792350; PMCID: PMC7253466.

    Article  CAS  PubMed  Google Scholar 

  82. Wu TT, Kung YH, Hong MC. Vitreous hemorrhage complicating intravitreal tissue plasminogen activator and pneumatic displacement of submacular hemorrhage. Retina. 2011;31(10):2071–7. https://doi.org/10.1097/IAE.0b013e31822528c8. PMID: 21817964.

    Article  PubMed  Google Scholar 

  83. Lim JH, Han YS, Lee SJ, Nam KY. Risk factors for breakthrough vitreous hemorrhage after intravitreal tissue plasminogen activator and gas injection for submacular hemorrhage associated with age related macular degeneration. PLoS One. 2020;15(12):e0243201. https://doi.org/10.1371/journal.pone.0243201. PMID: 33270725; PMCID: PMC7714180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hua HU, Rayess N, Moshfeghi AA. Acute promyelocytic leukemia with sudden vision loss. JAMA Ophthalmol. 2020;138(2):206–7. https://doi.org/10.1001/jamaophthalmol.2019.4838. PMID: 31804661.

    Article  PubMed  Google Scholar 

  85. Lee C, Hwang Y-S. Hemorrhagic retinal detachment in acute promyelocytic leukemia. Taiwan J Ophthalmol. 2013;3:123–5. https://doi.org/10.1016/j.tjo.2012.12.006.

    Article  Google Scholar 

  86. Hu HH, Zhu XY, **e ZG, Chen F. Multimodal imaging of spontaneous subretinal hemorrhage in a young male: a case report. BMC Ophthalmol. 2020;20(1):374. https://doi.org/10.1186/s12886-020-01634-3. PMID: 32962682; PMCID: PMC7510117.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sakaguchi S, Muraoka Y, Kadomoto S, Ooto S, Murakami T, Nishigori N, Ishikura M, Miyake M, Miyata M, Uji A, Tsujikawa A. Three-dimensional locations of ruptured retinal arterial macroaneurysms and their associations with the visual prognosis. Sci Rep. 2022;12(1):503. https://doi.org/10.1038/s41598-021-04500-4. PMID: 35017582; PMCID: PMC8752622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen KJ, Sun MH, Sun CC, Wang NK, Hou CH, Wu AL, Wu WC, Lai CC. Traumatic maculopathy with massive subretinal hemorrhage after closed-globe injuries: associated findings, management, and visual outcomes. Ophthalmol Retina. 2019;3(1):53–60. https://doi.org/10.1016/j.oret.2018.08.007. Epub 2018 Aug 25. PMID: 30935658.

    Article  PubMed  Google Scholar 

  89. Dai Y, Sun T, Gong JF. Inadvertent globe penetration during retrobulbar anesthesia: a case report. World J Clin Cases. 2021;9(8):2001–7. https://doi.org/10.12998/wjcc.v9.i8.2001. PMID: 33748253; PMCID: PMC7953384.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Bansal, R., Sharma, A., Kapil, A. (2023). Subretinal/Submacular Haemorrhage. In: Ophthalmic Signs in Practice of Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-99-7923-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7923-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7922-6

  • Online ISBN: 978-981-99-7923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation