Subretinal Fluid and Retinal Detachment

  • Chapter
  • First Online:
Ophthalmic Signs in Practice of Medicine
  • 205 Accesses

Abstract

The neurosensory retina and the RPE are normally glued to each other by an interphotoreceptor-binding protein matrix without forming any adhesions. An active pump located at the apical aspect of the RPE microvilli keeps the potential subretinal space dry. However, several disorders, including central serous chorioretinopathy, pachychoroid spectrum disorders, diabetic macular oedema, retinal vein occlusions, neovascular membrane in the macula, hypertensive choroidopathy, posterior uveitis, and metastatic lesions in the choroid, may lead to accumulation of fluid in the subretinal space termed the exudative retinal detachment. The subretinal fluid accumulates most often due to increased hydrostatic pressure in the choroid. Central serous choroidopathy is part of a pachychoroid spectrum. The increased hydrostatic pressure in the choroid is likely due to venous overload choroidopathy. Disruptions in the ellipsoid zone ELM and hyperreflective foci, inflammatory cytokines, and high blood pressure are risk factors for subretinal fluid in diabetic macular oedema. In retinal vein occlusion, excessive fluid leakage through the Muller cells may lead to subretinal fluid.

The attachment of the neurosensory retina to the RPE may be overwhelmed by tractional forces on the neurosensory retina in proliferative diabetic retinopathy, branch retinal vein occlusion, retinopathy of prematurity, and high myopia. Traction can be relieved only by surgery with subsequent absorption of the subretinal fluid.

Tears or holes in the neurosensory retina allow ocular fluids to flow into the subretinal space and cause a rhegmatogenous retinal detachment (RRD). A fresh RRD appears as a semitransparent, undulating membrane with folds in its outer layers. Depending on the location of the retinal breaks in the upper or lower half, the retinal detachment is bullous and fast progressing or shallow and slow progressing, respectively. Locating and sealing all the breaks during surgery is vital to successfully reattach the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84. https://doi.org/10.1016/B978-0-12-385044-7.00003-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J Biol Chem. 2018;13016–21. https://doi.org/10.1074/jbc.AW118.003228. Epub2018 Jul 12. PMID:30002120; PMCID: PMC6109927.

  3. Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 1991;32(13):3145–66.

    CAS  PubMed  Google Scholar 

  4. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9. https://doi.org/10.2174/1874364101004010052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith DW, Lee CJ, Gardiner BS. No flow through the vitreous humor: how strong is the evidence? Prog Retin Eye Res. 2020:100845. https://doi.org/10.1016/j.preteyeres.2020.100845. Epub ahead of print.

  6. Adler AJ, Klucznik KM. Proteins and glycoproteins of the bovine interphotoreceptor matrix: composition and fractionation. Exp Eye Res. 1982;34:423–34.

    Article  CAS  PubMed  Google Scholar 

  7. Marmor MF. Chapter 19: Mechanisms of normal retinal adhesion. In: Ryan SJ, Sadda SVR, Hinton DR, Schachat AP, Wilkinson CP, Wiedemann P, editors. Retina. 5th ed. W.B. Saunders; 2013. p. 447–64. ISBN: 9781455707379. https://www.sciencedirect.com/science/article/pii/B9781455707379000199. https://doi.org/10.1016/B978-1-4557-0737-9.00019-9.

    Chapter  Google Scholar 

  8. Marmor MF, Abdul-Rahim AS, Cohen DS. The effect of metabolic inhibitors on retinal adhesion and subretinal fluid resorption. Invest Ophthalmol Vis Sci. 1980;19(8):893–903.

    CAS  PubMed  Google Scholar 

  9. Marmor MF, Yao XY. The enhancement of retinal adhesiveness by ouabain appears to involve cellular edema. Invest Ophthalmol Vis Sci. 1989;30(7):1511–4.

    CAS  PubMed  Google Scholar 

  10. Negi A, Marmor MF. Quantitative estimation of metabolic transport of subretinal fluid. Invest Ophthalmol Vis Sci. 1986;27(11):1564–8.

    CAS  PubMed  Google Scholar 

  11. Chihara E, Nao-i N. Resorption of subretinal fluid by transepithelial flow of the retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 1985;223(4):202–4. https://doi.org/10.1007/BF02174060.

    Article  CAS  PubMed  Google Scholar 

  12. Soubrane G, Coscas G. Chapter 30: Pathogenesis of serous detachment of the retina and pigment epithelium. In: Ryan SJ, Sadda SVR, Hinton DR, Schachat AP, Wilkinson CP, Wiedemann P, editors. Retina. 5th ed. W.B. Saunders; 2013. p. 618–23. ISBN: 9781455707379. https://www.sciencedirect.com/science/article/pii/B9781455707379000308. https://doi.org/10.1016/B978-1-4557-0737-9.00030-8.

    Chapter  Google Scholar 

  13. Marmor MF, Maack T. Enhancement of retinal adhesion and subretinal fluid resorption by acetazolamide. Invest Ophthalmol Vis Sci. 1982;23(1):121–4.

    CAS  PubMed  Google Scholar 

  14. Wolfensberger TJ, Chiang RK, Takeuchi A, Marmor MF. Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness. Graefes Arch Clin Exp Ophthalmol. 2000;238(1):76–80. https://doi.org/10.1007/s004170050013.

    Article  CAS  PubMed  Google Scholar 

  15. Kido A, Miyake M, Tamura H, Hiragi S, Kimura T, Ohtera S, Takahashi A, Ooto S, Kawakami K, Kuroda T, Tsujikawa A. Incidence of central serous chorioretinopathy (2011-2018): a nationwide population-based cohort study of Japan. Br J Ophthalmol. 2022;106(12):1748–53. https://doi.org/10.1136/bjophthalmol-2021-319403. Epub 2021 Jul 14.

    Article  PubMed  Google Scholar 

  16. Gäckle HC, Lang GE, Freissler KA, Lang GK. Chorioretinopathia centralis serosa. Klinische, fluoreszeinangiographische und demographische Aspekte [Central serous chorioretinopathy. Clinical, fluorescein angiography and demographic aspects]. Ophthalmologe. 1998;95(8):529–33. German. https://doi.org/10.1007/s003470050310.

    Article  PubMed  Google Scholar 

  17. Gupta P, Gupta V, Dogra MR, Singh R, Gupta A. Morphological changes in the retinal pigment epithelium on spectral-domain OCT in the unaffected eyes with idiopathic central serous chorioretinopathy. Int Ophthalmol. 2010;30(2):175–81. https://doi.org/10.1007/s10792-009-9302-2. Epub 2009 Jan 30.

    Article  PubMed  Google Scholar 

  18. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112(8):1057–62. https://doi.org/10.1001/archopht.1994.01090200063023.

    Article  CAS  PubMed  Google Scholar 

  19. Piccolino FC, Borgia L. Central serous chorioretinopathy and indocyanine green angiography. Retina. 1994;14(3):231–42. https://doi.org/10.1097/00006982-199414030-00008.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto H, Kishi S, Sato T, Mukai R. Fundus autofluorescence of elongated photoreceptor outer segments in central serous chorioretinopathy. Am J Ophthalmol. 2011;151(4):617–623.e1. https://doi.org/10.1016/j.ajo.2010.09.031. Epub 2011 Jan 22.

    Article  PubMed  Google Scholar 

  21. Gass JD, Little H. Bilateral bullous exudative retinal detachment complicating idiopathic central serous chorioretinopathy during systemic corticosteroid therapy. Ophthalmology. 1995;102(5):737–47. https://doi.org/10.1016/s0161-6420(95)30960-8.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta P, Gupta A, Gupta V, Singh R. Successful outcome of giant retinal pigment epithelium rip in idiopathic central serous chorioretinopathy. Retina. 2008;28(2):364–5. https://doi.org/10.1097/IAE.0b013e31815960d5.

    Article  PubMed  Google Scholar 

  23. Ishida Y, Kato T, Minamoto A, Yokoyama T, Jian K, Mishima HK. Retinal pigment epithelial tear in a patient with central serous chorioretinopathy treated with corticosteroids. Retina. 2004;24(4):633–6. https://doi.org/10.1097/00006982-200408000-00028.

    Article  PubMed  Google Scholar 

  24. Lim Z, Wong D. Retinal pigment epithelial rip associated with idiopathic central serous chorioretinopathy. Eye (Lond). 2008;22(3):471–3. https://doi.org/10.1038/sj.eye.6703020. Epub 2007 Nov 9.

    Article  CAS  PubMed  Google Scholar 

  25. Parchand S, Gupta V, Gupta A, Dogra MR. Bilateral giant retinal pigment epithelial rip in idiopathic central serous chorioretinopathy. Retina. 2011;31(9):1977–8. https://doi.org/10.1097/IAE.0b013e31822352b9.

    Article  PubMed  Google Scholar 

  26. Shanmugam MP, Bhende M. Retinal pigment epithelial tears associated with idiopathic central serous chorioretinopathy. Indian J Ophthalmol. 2000;48(4):315–7.

    CAS  PubMed  Google Scholar 

  27. Terao N, Koizumi H, Kojima K, Kusada N, Nagata K, Yamagishi T, Yoneda K, Yoshii K, Kinoshita S, Sotozono C. Short axial length and hyperopic refractive error are risk factors of central serous chorioretinopathy. Br J Ophthalmol. 2020;104(9):1260–5. https://doi.org/10.1136/bjophthalmol-2019-315236. Epub 2019 Nov 28.

    Article  PubMed  Google Scholar 

  28. Yannuzzi LA. Type-A behavior and central serous chorioretinopathy. Retina. 1987;7(2):111–31. https://doi.org/10.1097/00006982-198700720-00009.

    Article  CAS  PubMed  Google Scholar 

  29. Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S, Central Serous Chorioretinopathy Case-Control Study Group. Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology. 2004;111(2):244–9. https://doi.org/10.1016/j.ophtha.2003.09.024.

    Article  PubMed  Google Scholar 

  30. Spahn C, Wiek J, Burger T, Hansen L. Psychosomatic aspects in patients with central serous chorioretinopathy. Br J Ophthalmol. 2003;87(6):704–8. https://doi.org/10.1136/bjo.87.6.704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piccolino FC, Fruttini D, Eandi C, Nicolò M, Mariotti C, Tito S, Lupidi M. Vigorous physical activity as a risk factor for central serous chorioretinopathy. Am J Ophthalmol. 2022;244:30–7. https://doi.org/10.1016/j.ajo.2022.08.002. Epub ahead of print.

    Article  PubMed  Google Scholar 

  32. Sawaguchi S, Terao N, Imanaga N, Wakugawa S, Tamashiro T, Yamauchi Y, Koizumi H. Scleral thickness in steroid-induced central serous chorioretinopathy. Ophthalmol Sci. 2022;2(2):100124. https://doi.org/10.1016/j.xops.2022.100124.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sander BP, Collins MJ, Read SA. The effect of topical adrenergic and anticholinergic agents on the choroidal thickness of young healthy adults. Exp Eye Res. 2014;128:181–9. https://doi.org/10.1016/j.exer.2014.10.003. Epub 2014 Oct 7.

    Article  CAS  PubMed  Google Scholar 

  34. German O, Jampol LM. Relapsing pigment epithelial detachment in central serous chorioretinopathy after dilated eye examination. JAMA Ophthalmol. 2020;138(10):1106–7. https://doi.org/10.1001/jamaophthalmol.2020.3024.

    Article  PubMed  Google Scholar 

  35. Watson MJG, Yellachich D. Relapsing pigment epithelial detachment in central serous chorioretinopathy after dilated eye examination. JAMA Ophthalmol. 2020;138(3):318–9. https://doi.org/10.1001/jamaophthalmol.2019.5946.

    Article  PubMed  Google Scholar 

  36. Kara N, Demircan A, Karatas G, Ozgurhan EB, Tatar G, Karakucuk Y, Basci A, Demirok A. Effects of two commonly used mydriatics on choroidal thickness: direct and crossover effects. J Ocul Pharmacol Ther. 2014;30(4):366–70. https://doi.org/10.1089/jop.2013.0093. Epub 2014 Jan 29.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshioka H, Katsume Y, Akune H. Experimental central serous chorioretinopathy in monkey eyes: fluorescein angiographic findings. Ophthalmologica. 1982;185(3):168–78. https://doi.org/10.1159/000309239.

    Article  CAS  PubMed  Google Scholar 

  38. Sibayan SA, Kobuch K, Spiegel D, Eckert E, Leser R, Monzer J, Gabel VP. Epinephrine, but not dexamethasone, induces apoptosis in retinal pigment epithelium cells in vitro: possible implications on the pathogenesis of central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2000;238(6):515–9. https://doi.org/10.1007/pl00007893.

    Article  CAS  PubMed  Google Scholar 

  39. Garg SP, Dada T, Talwar D, Biswas NR. Endogenous cortisol profile in patients with central serous chorioretinopathy. Br J Ophthalmol. 1997;81(11):962–4. https://doi.org/10.1136/bjo.81.11.962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta V, Gupta P, Dogra MR, Gupta A. Spontaneous closure of retinal pigment epithelium microrip in the natural course of central serous chorioretinopathy. Eye (Lond). 2010;24(4):595–9. https://doi.org/10.1038/eye.2009.193. Epub 2009 Jul 31.

    Article  CAS  PubMed  Google Scholar 

  41. Ranjan R, Agarwal M, Verma N. Microrip of retinal pigment epithelium in central serous chorioretinopathy. JAMA Ophthalmol. 2020;138(6):e193120. https://doi.org/10.1001/jamaophthalmol.2019.3120. Epub 2020 Jun 11.

    Article  PubMed  Google Scholar 

  42. Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted enhanced depth imaging of central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2013;54(7):4659–65. https://doi.org/10.1167/iovs.12-10991.

    Article  PubMed  Google Scholar 

  43. Yannuzzi LA, Freund KB, Goldbaum M, Scassellati-Sforzolini B, Guyer DR, Spaide RF, Maberley D, Wong DW, Slakter JS, Sorenson JA, Fisher YL, Orlock DA. Polypoidal choroidal vasculopathy masquerading as central serous chorioretinopathy. Ophthalmology. 2000;107(4):767–77. https://doi.org/10.1016/s0161-6420(99)00173-6.

    Article  CAS  PubMed  Google Scholar 

  44. Marmor MF. On the cause of serous detachments and acute central serous chorioretinopathy. Br J Ophthalmol. 1997;81(10):812–3. https://doi.org/10.1136/bjo.81.10.812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imanaga N, Terao N, Nakamine S, Tamashiro T, Wakugawa S, Sawaguchi K, Koizumi H. Scleral thickness in central serous chorioretinopathy. Ophthalmol Retina. 2021;5(3):285–91. https://doi.org/10.1016/j.oret.2020.07.011. Epub 2020 Jul 16.

    Article  PubMed  Google Scholar 

  46. Bansal R, Menia NK, Gupta A. Familial nanophthalmos presenting with spontaneous uveal effusion syndrome. Ocul Immunol Inflamm. 2020;28(2):191–3. https://doi.org/10.1080/09273948.2018.1552761. Epub 2018 Dec 17.

    Article  PubMed  Google Scholar 

  47. Terao N, Imanaga N, Wakugawa S, Sawaguchi S, Tamashiro T, Yamauchi Y, Koizumi H. Ciliochoroidal effusion in central serous chorioretinopathy. Retina. 2022;42(4):730–7. https://doi.org/10.1097/IAE.0000000000003376.

    Article  CAS  PubMed  Google Scholar 

  48. Imanaga N, Terao N, Sawaguchi S, Tamashiro T, Wakugawa S, Yamauchi Y, Koizumi H. Clinical factors related to loculation of fluid in central serous chorioretinopathy. Am J Ophthalmol. 2022;235:197–203. https://doi.org/10.1016/j.ajo.2021.09.009. Epub 2021 Sep 20.

    Article  PubMed  Google Scholar 

  49. Spaide RF, Ryan EH Jr. Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy. Am J Ophthalmol. 2015;160(6):1211–6. https://doi.org/10.1016/j.ajo.2015.08.018. Epub 2015 Aug 20.

    Article  PubMed  Google Scholar 

  50. Nishi O, Yasukawa T. Comment on: Clinical factors related to loculation of fluid in central serous chorioretinopathy. Am J Ophthalmol. 2022;241:293–4. https://doi.org/10.1016/j.ajo.2022.04.028. Epub 2022 Jun 21.

    Article  PubMed  Google Scholar 

  51. Imanaga N, Koizumi H. Reply to “Comment on clinical factors related to loculation of fluid in central serous chorioretinopathy”. Am J Ophthalmol. 2022;241:295. https://doi.org/10.1016/j.ajo.2022.06.012. Epub 2022 Jun 22.

    Article  PubMed  Google Scholar 

  52. Spaide RF, Gemmy Cheung CM, Matsumoto H, Kishi S, Boon CJF, van Dijk EHC, Mauget-Faysse M, Behar-Cohen F, Hartnett ME, Sivaprasad S, Iida T, Brown DM, Chhablani J, Maloca PM. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res. 2022;86:100973. https://doi.org/10.1016/j.preteyeres.2021.100973. Epub 2021 May 21.

    Article  CAS  PubMed  Google Scholar 

  53. Kishi S, Matsumoto H. A new insight into pachychoroid diseases: remodeling of choroidal vasculature. Graefes Arch Clin Exp Ophthalmol. 2022;260(11):3405–17. https://doi.org/10.1007/s00417-022-05687-6. Epub 2022 May 16.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Kishi S, Akiyama H. Chronic choriocapillaris ischemia in dilated vortex vein region in pachychoroid neovasculopathy. Sci Rep. 2021;11(1):16274. https://doi.org/10.1038/s41598-021-95904-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fung AT, Yannuzzi LA, Freund KB. Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina. 2012;32(9):1829–37. https://doi.org/10.1097/IAE.0b013e3182680a66.

    Article  PubMed  Google Scholar 

  56. Spaide RF, Campeas L, Haas A, Yannuzzi LA, Fisher YL, Guyer DR, Slakter JS, Sorenson JA, Orlock DA. Central serous chorioretinopathy in younger and older adults. Ophthalmology. 1996;103(12):2070–9; discussion 2079–80. https://doi.org/10.1016/s0161-6420(96)30386-2.

    Article  CAS  PubMed  Google Scholar 

  57. Bansal R, Dogra M, Mulkutkar S, Katoch D, Singh R, Gupta V, Dogra MR, Gupta A. Optical coherence tomography angiography versus fluorescein angiography in diagnosing choroidal neovascularization in chronic central serous chorioretinopathy. Indian J Ophthalmol. 2019;67(7):1095–100. https://doi.org/10.4103/ijo.IJO_1238_18.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ng DS, Ho M, Chen LJ, Yip FL, Teh WM, Zhou L, Mohamed S, Tsang CW, Brelén ME, Chen H, Pang CP, Lai TYY. Optical coherence tomography angiography compared with multimodal imaging for diagnosing neovascular central serous chorioretinopathy. Am J Ophthalmol. 2021;232:70–82. https://doi.org/10.1016/j.ajo.2021.05.029. Epub 2021 Jun 9.

    Article  PubMed  Google Scholar 

  59. Bonini Filho MA, de Carlo TE, Ferrara D, Adhi M, Baumal CR, Witkin AJ, Reichel E, Duker JS, Waheed NK. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(8):899–906. https://doi.org/10.1001/jamaophthalmol.2015.1320.

    Article  PubMed  Google Scholar 

  60. Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol. 2015;160(6):1243–1254.e2. https://doi.org/10.1016/j.ajo.2015.08.028. Epub 2015 Aug 28.

    Article  PubMed  Google Scholar 

  61. Hagag AM, Rasheed R, Chandra S, Jeffery G, Sivaprasad S. The diagnostic accuracy of double-layer sign in detection of macular neovascularization secondary to central serous chorioretinopathy. Am J Ophthalmol. 2022;236:271–80. https://doi.org/10.1016/j.ajo.2021.10.021. Epub 2021 Oct 23.

    Article  PubMed  Google Scholar 

  62. Zhang Y, Zhang J, Sun X. The efficacy of anti-VEGF therapy for putative or visible CNV in central serous chorioretinopathy by optical coherence tomography angiography. J Ophthalmol. 2022;2022:1272524. https://doi.org/10.1155/2022/1272524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Z, Zhang J. Nonhomogenous hyperreflectivity in the choriocapillaris layer on optical coherence tomography angiography implies early treatment with anti-VEGF for central serous chorioretinopathy. Ophthalmic Res. 2022;65(5):506–15. https://doi.org/10.1159/000524488. Epub 2022 Apr 11.

    Article  CAS  PubMed  Google Scholar 

  64. Mandadi SKR, Singh SR, Sahoo NK, Mishra SB, Sacconi R, Iovino C, Berger L, Munk MR, Querques G, Peiretti E, Chhablani J. Optical coherence tomography angiography findings in fellow eyes of choroidal neovascularisation associated with central serous chorioretinopathy. Br J Ophthalmol. 2021;105(9):1280–5. https://doi.org/10.1136/bjophthalmol-2018-313576. Epub 2019 Feb 23.

    Article  PubMed  Google Scholar 

  65. Behar-Cohen F, Zhao M. Mineralocorticoid pathway in retinal health and diseases. Br J Pharmacol. 2022;179(13):3190–204. https://doi.org/10.1111/bph.15770. Epub 2022 Jan 28.

    Article  CAS  PubMed  Google Scholar 

  66. Bousquet E, Beydoun T, Zhao M, Hassan L, Offret O, Behar-Cohen F. Mineralocorticoid receptor antagonism in the treatment of chronic central serous chorioretinopathy: a pilot study. Retina. 2013;33(10):2096–102. https://doi.org/10.1097/IAE.0b013e318297a07a.

    Article  CAS  PubMed  Google Scholar 

  67. Toto L, D’Aloisio R, De Nicola C, Evangelista F, Ruggeri ML, Cerino L, Simonelli MB, Aharrh-Gnama A, Di Nicola M, Porreca A, Mastropasqua R. Short-term comparison between navigated subthreshold microsecond pulse laser and oral eplerenone for chronic central serous chorioretinopathy. Sci Rep. 2022;12(1):4727. https://doi.org/10.1038/s41598-022-08764-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Rijssen TJ, van Dijk EHC, Tsonaka R, Feenstra HMA, Dijkman G, Peters PJH, Diederen RMH, Hoyng CB, Schlingemann RO, Boon CJF. Half-dose photodynamic therapy versus eplerenone in chronic central serous chorioretinopathy (SPECTRA): a randomized controlled trial. Am J Ophthalmol. 2022;233:101–10. https://doi.org/10.1016/j.ajo.2021.06.020. Epub 2021 Jun 29.

    Article  CAS  PubMed  Google Scholar 

  69. Lotery A, Sivaprasad S, O’Connell A, Harris RA, Culliford L, Ellis L, Cree A, Madhusudhan S, Behar-Cohen F, Chakravarthy U, Peto T, Rogers CA, Reeves BC, VICI Trial Investigators. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial. Lancet. 2020;395(10220):294–303. https://doi.org/10.1016/S0140-6736(19)32981-2.

    Article  CAS  PubMed  Google Scholar 

  70. Gergely R, Kovács I, Récsán Z, Sándor GL, Czakó C, Nagy ZZ, Ecsedy M. Predictive factors of selective mineralocorticoid receptor antagonist treatment in chronic central serous chorioretinopathy. Sci Rep. 2020;10(1):16621. https://doi.org/10.1038/s41598-020-73959-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D’Amore PA. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res. 2003;77(5):593–9. https://doi.org/10.1016/s0014-4835(03)00189-1.

    Article  CAS  PubMed  Google Scholar 

  72. Curcio CA, Millican CL, Bailey T, Kruth HS. Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2001;42(1):265–74.

    CAS  PubMed  Google Scholar 

  73. Meng LH, Chen YX. Lipid accumulation and protein modifications of Bruch’s membrane in age-related macular degeneration. Int J Ophthalmol. 2021;14(5):766–73. https://doi.org/10.18240/ijo.2021.05.19.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guymer RH, Markey CM, McAllister IL, Gillies MC, Hunyor AP, Arnold JJ, Investigators FLUID. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. Ophthalmology. 2019;126(5):723–34. https://doi.org/10.1016/j.ophtha.2018.11.025. Epub 2018 Nov 29.

    Article  PubMed  Google Scholar 

  75. Aslam TM, Mahmood S, Balaskas K, Hoyle DC. Statistical modelling of the visual impact of subretinal fluid and associated features. Ophthalmol Ther. 2021;10(1):127–35. https://doi.org/10.1007/s40123-020-00327-w. Epub 2021 Jan 9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zarbin MA, Hill L, Maunz A, Gliem M, Stoilov I. Anti-VEGF-resistant subretinal fluid is associated with better vision and reduced risk of macular atrophy. Br J Ophthalmol. 2022;106(11):1561–6. https://doi.org/10.1136/bjophthalmol-2020-318688. Epub 2021 May 26.

    Article  PubMed  Google Scholar 

  77. Chaudhary V, Matonti F, Zarranz-Ventura J, Stewart MW. Impact of fluid compartments on functional outcomes for patients with neovascular age-related macular degeneration: a systematic literature review. Retina. 2022;42(4):589–606. https://doi.org/10.1097/IAE.0000000000003283.

    Article  PubMed  Google Scholar 

  78. Bringmann A, Wiedemann P. Müller glial cells in retinal disease. Ophthalmologica. 2012;227(1):1–19. https://doi.org/10.1159/000328979. Epub 2011 Sep 15.

    Article  PubMed  Google Scholar 

  79. Riedl S, Cooney L, Grechenig C, Sadeghipour A, Pablik E, Seaman JW 3rd, Waldstein SM, Schmidt-Erfurth U. Topographic analysis of photoreceptor loss correlated with disease morphology in neovascular age-related macular degeneration. Retina. 2020;40(11):2148–57. https://doi.org/10.1097/IAE.0000000000002717.

    Article  PubMed  Google Scholar 

  80. Xu M, Xu H, Li X, Chen F. Characteristics of macular morphology and microcirculation in diabetic macular edema patients with serous retinal detachment. BMC Ophthalmol. 2022;22(1):299. https://doi.org/10.1186/s12886-022-02523-7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Sonoda Y. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina. 2014;34(4):741–8. https://doi.org/10.1097/IAE.0b013e3182a48917.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta A, Raman R, Kulothungan V, Sharma T. Association of systemic and ocular risk factors with neurosensory retinal detachment in diabetic macular edema: a case-control study. BMC Ophthalmol. 2014;14:47. https://doi.org/10.1186/1471-2415-14-47.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gündoğdu KÖ, Doğan E, Çelik E, Alagöz G. Effect of intravitreal ranibizumab on serous retinal detachment in diabetic macular edema. J Diabetes Complicat. 2022;36(7):108228. https://doi.org/10.1016/j.jdiacomp.2022.108228. Epub 2022 Jun 7.

    Article  CAS  Google Scholar 

  84. Bayat AH, Elçioğlu MN. Effects of dexamethasone treatment on serous retinal detachment in ranibizumab-resistant diabetic macular edema. Ther Adv Ophthalmol. 2020;12:2515841420971936. https://doi.org/10.1177/2515841420971936.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Maggio E, Mete M, Sartore M, Bauci F, Guerriero M, Polito A, Pertile G. Temporal variation of optical coherence tomography biomarkers as predictors of anti-VEGF treatment outcomes in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):807–15. https://doi.org/10.1007/s00417-021-05387-7. Epub 2021 Oct 18.

    Article  CAS  PubMed  Google Scholar 

  86. Ozsaygili C, Duru N. Comparison of intravitreal dexamethasone implant and aflibercept in patients with treatment-naive diabetic macular edema with serous retinal detachment. Retina. 2020;40(6):1044–52. https://doi.org/10.1097/IAE.0000000000002537.

    Article  CAS  PubMed  Google Scholar 

  87. Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A, International Retina Group. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology. 2018;125(2):267–75. https://doi.org/10.1016/j.ophtha.2017.08.031. Epub 2017 Sep 19

    Article  PubMed  Google Scholar 

  88. Weinberg D, Jampol LM, Schatz H, Brady KD. Exudative retinal detachment following central and hemicentral retinal vein occlusions. Arch Ophthalmol. 1990;108(2):271–5. https://doi.org/10.1001/archopht.1990.01070040123045. Erratum in: Arch Ophthalmol 1990;108(4):563.

    Article  CAS  PubMed  Google Scholar 

  89. Spaide RF, Lee JK, Klancnik JK Jr, Gross NE. Optical coherence tomography of branch retinal vein occlusion. Retina. 2003;23(3):343–7. https://doi.org/10.1097/00006982-200306000-00009.

    Article  PubMed  Google Scholar 

  90. Tsujikawa A, Sakamoto A, Ota M, Kotera Y, Oh H, Miyamoto K, Kita M, Yoshimura N. Serous retinal detachment associated with retinal vein occlusion. Am J Ophthalmol. 2010;149(2):291–301.e5. https://doi.org/10.1016/j.ajo.2009.09.007.

    Article  PubMed  Google Scholar 

  91. Chen L, Yuan M, Sun L, Chen Y. Choroidal thickening in retinal vein occlusion patients with serous retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2021;259(4):883–9. https://doi.org/10.1007/s00417-020-04983-3. Epub 2020 Nov 18.

    Article  CAS  PubMed  Google Scholar 

  92. Noma H, Funatsu H, Mimura T, Eguchi S. Vitreous inflammatory factors and serous retinal detachment in central retinal vein occlusion: a case control series. J Inflamm (Lond). 2011;8:38. https://doi.org/10.1186/1476-9255-8-38.

    Article  CAS  PubMed  Google Scholar 

  93. Noma H, Funatsu H, Mimura T, Tatsugawa M, Shimada K, Eguchi S. Vitreous inflammatory factors and serous macular detachment in branch retinal vein occlusion. Retina. 2012;32(1):86–91. https://doi.org/10.1097/IAE.0b013e31821801de.

    Article  PubMed  Google Scholar 

  94. Noma H, Funatsu H, Mimura T, Shimada K. Visual function and serous retinal detachment in patients with branch retinal vein occlusion and macular edema: a case series. BMC Ophthalmol. 2011;11:29. https://doi.org/10.1186/1471-2415-11-29.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bayat AH, Akpolat Ç, Livan H, Bölükbaşı S, Elçioğlu MN. Comparison of the effects of aflibercept and dexamethasone in central retinal vein occlusion with serous retinal detachment. Clin Exp Optom. 2022;105(4):404–9. https://doi.org/10.1080/08164622.2021.1927676. Epub 2021 Jun 17.

    Article  PubMed  Google Scholar 

  96. Küçük B, Sirakaya E, Karaca C. Comparison of ranibizumab versus aflibercept in treating macular edema among patients with serous retinal detachment secondary to branch retinal vein occlusion. Ocul Immunol Inflamm. 2021;29(2):403–10. https://doi.org/10.1080/09273948.2019.1681474. Epub 2019 Nov 13.

    Article  CAS  PubMed  Google Scholar 

  97. Karacorlu M, Karacorlu SA, Ozdemir H, Senturk F. Intravitreal triamcinolone acetonide for treatment of serous macular detachment in central retinal vein occlusion. Retina. 2007;27(8):1026–30. https://doi.org/10.1097/IAE.0b013e3180645905.

    Article  PubMed  Google Scholar 

  98. Noma H, Funatsu H, Mimura T, Shimada K. Comparison of the efficacy of intravitreal triamcinolone acetonide for cystoid macular edema with versus without serous retinal detachment in branch retinal vein occlusion: influence on macular sensitivity and morphology. BMC Ophthalmol. 2012;12:39. https://doi.org/10.1186/1471-2415-12-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. VI. Hypertensive choroidopathy. Ophthalmology. 1986;93(11):1383–400. https://doi.org/10.1016/s0161-6420(86)33554-1.

    Article  CAS  PubMed  Google Scholar 

  100. Rubin S, Cremer A, Boulestreau R, Rigothier C, Kuntz S, Gosse P. Malignant hypertension: diagnosis, treatment and prognosis with experience from the Bordeaux cohort. J Hypertens. 2019;37(2):316–24. https://doi.org/10.1097/HJH.0000000000001913.

    Article  CAS  PubMed  Google Scholar 

  101. Mishima E, Funayama Y, Suzuki T, Mishima F, Nitta F, Toyohara T, Kikuchi K, Kunikata H, Hashimoto J, Miyazaki M, Harigae H, Nakazawa T, Ito S, Abe T. Concurrent analogous organ damage in the brain, eyes, and kidneys in malignant hypertension: reversible encephalopathy, serous retinal detachment, and proteinuria. Hypertens Res. 2021;44(1):88–97. https://doi.org/10.1038/s41440-020-0521-2. Epub 2020 Jul 27.

    Article  PubMed  Google Scholar 

  102. Saito M, Noda K, Saito W, Hirooka K, Hashimoto Y, Ishida S. Increased choroidal blood flow and choroidal thickness in patients with hypertensive chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258(2):233–40. https://doi.org/10.1007/s00417-019-04511-y. Epub 2019 Nov 14.

    Article  PubMed  Google Scholar 

  103. Bourke K, Patel MR, Prisant LM, Marcus DM. Hypertensive choroidopathy. J Clin Hypertens (Greenwich). 2004;6(8):471–2. https://doi.org/10.1111/j.1524-6175.2004.3749.x.

    Article  PubMed  Google Scholar 

  104. Dewilde E, Huygens M, Cools G, Van Calster J. Hypertensive choroidopathy in pre-eclampsia: two consecutive cases. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):343–6. https://doi.org/10.3928/23258160-20140617-02. Epub 2014 Jun 30.

    Article  PubMed  Google Scholar 

  105. Rotsos T, Andreanos K, Blounas S, Brouzas D, Ladas DS, Ladas ID. Multimodal imaging of hypertensive chorioretinopathy by swept-source optical coherence tomography and optical coherence tomography angiography: case report. Medicine (Baltimore). 2017;96(39):e8110. https://doi.org/10.1097/MD.0000000000008110.

    Article  PubMed  Google Scholar 

  106. Velazquez-Villoria D, Marti Rodrigo P, DeNicola ML, Zapata Vitori MA, Segura García A, García-Arumí J. Swept source optical coherence tomography evaluation of chorioretinal changes in hypertensive choroidopathy related to Hellp syndrome. Retin Cases Brief Rep. 2019;13(1):30–3. https://doi.org/10.1097/ICB.0000000000000524.

    Article  PubMed  Google Scholar 

  107. Kishi S, Tso MO, Hayreh SS. Fundus lesions in malignant hypertension. I. A pathologic study of experimental hypertensive choroidopathy. Arch Ophthalmol. 1985;103(8):1189–97. https://doi.org/10.1001/archopht.1985.01050080101029.

    Article  CAS  PubMed  Google Scholar 

  108. Viruni N, Ong SS, Wu JH, Liu TYA. Longitudinal optical coherence tomography angiography findings in malignant hypertension choroidopathy: a case report. Case Rep Ophthalmol. 2022;13(1):276–81. https://doi.org/10.1159/000524115.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Saito M, Ishibazawa A, Kinouchi R, Yoshida A. Reperfusion of the choriocapillaris observed using optical coherence tomography angiography in hypertensive choroidopathy. Int Ophthalmol. 2018;38(5):2205–10. https://doi.org/10.1007/s10792-017-0705-1. Epub 2017 Sep 11.

    Article  PubMed  Google Scholar 

  110. Lee CS, Choi EY, Lee M, Kim H, Chung H. Serous retinal detachment in preeclampsia and malignant hypertension. Eye (Lond). 2019;33(11):1707–14. https://doi.org/10.1038/s41433-019-0461-8. Epub 2019 May 14.

    Article  CAS  PubMed  Google Scholar 

  111. Chang YS, Weng SF, Chang C, Wang JJ, Chen HI, Ko SY, Tu IT, Chien CC, Wang JJ, Wang CM, Jan RL. Risk of serous retinal detachment in patients with end-stage renal disease on dialysis. PLoS One. 2017;12(6):e0180133. https://doi.org/10.1371/journal.pone.0180133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shah DN, Al-Moujahed A, Newcomb CW, Kaçmaz RO, Daniel E, Thorne JE, Foster CS, Jabs DA, Levy-Clarke GA, Nussenblatt RB, Rosenbaum JT, Sen HN, Suhler EB, Bhatt NP, Kempen JH. Systemic immunosuppressive therapy for eye diseases research group exudative retinal detachment in ocular inflammatory diseases: risk and predictive factors. Am J Ophthalmol. 2020;218:279–87. https://doi.org/10.1016/j.ajo.2020.06.019. Epub 2020 Jul 2.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lehpamer B, Moshier E, Goldberg N, Ackert J, Godbold J, Jabs DA. Subretinal fluid in uveitic macular edema: effect on vision and response to therapy. Am J Ophthalmol. 2013;155(1):143–9. https://doi.org/10.1016/j.ajo.2012.06.028. Epub 2012 Sep 27.

    Article  PubMed  Google Scholar 

  114. Munk MR, Sacu S, Huf W, Sulzbacher F, Mittermüller TJ, Eibenberger K, Rezar S, Bolz M, Kiss CG, Simader C, Schmidt-Erfurth U. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina. 2014;34(11):2218–32. https://doi.org/10.1097/IAE.0000000000000228.

    Article  PubMed  Google Scholar 

  115. Ossewaarde-van Norel J, Berg EM, Sijssens KM, Rothova A. Subfoveal serous retinal detachment in patients with uveitic macular edema. Arch Ophthalmol. 2011;129(2):158–62. https://doi.org/10.1001/archophthalmol.2010.337.

    Article  PubMed  Google Scholar 

  116. Weldy EW, Patnaik JL, Pecen PE, Palestine AG. Quantitative effect of subretinal fluid and intraretinal edema on visual acuity in uveitic cystoid macular edema. J Ophthalmic Inflamm Infect. 2021;11(1):38. https://doi.org/10.1186/s12348-021-00266-y.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Alvarez-Guzman C, Bustamante-Arias A, Colorado-Zavala MF, Rodriguez-Garcia A. The impact of central foveal thickness and integrity of the outer retinal layers in the visual outcome of uveitic macular edema. Int J Retina Vitreous. 2021;7(1):36. https://doi.org/10.1186/s40942-021-00306-8.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ducos de Lahitte G, Terrada C, Tran TH, Cassoux N, LeHoang P, Kodjikian L, Bodaghi B. Maculopathy in uveitis of juvenile idiopathic arthritis: an optical coherence tomography study. Br J Ophthalmol. 2008;92(1):64–9. https://doi.org/10.1136/bjo.2007.120675. Epub 2007 Jun 21. Erratum in: Br J Ophthalmol. 2008;92(8):1159.

    Article  CAS  PubMed  Google Scholar 

  119. Liang F, Terrada C, Ducos de Lahitte G, Quartier P, Lehoang P, Thorne JE, Bodaghi B. Foveal serous retinal detachment in juvenile idiopathic arthritis-associated uveitis. Ocul Immunol Inflamm. 2016;24(4):386–91. https://doi.org/10.3109/09273948.2015.1012297. Epub 2015 Jul 14.

    Article  PubMed  Google Scholar 

  120. Kalogeropoulos C, Koumpoulis I, Mentis A, Pappa C, Zafeiropoulos P, Aspiotis M. Bartonella and intraocular inflammation: a series of cases and review of literature. Clin Ophthalmol. 2011;5:817–29. https://doi.org/10.2147/OPTH.S20157. Epub 2011 Jun 16.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pollock SC, Kristinsson J. Cat-scratch disease manifesting as unifocal helioid choroiditis. Arch Ophthalmol. 1998;116(9):1249–51.

    CAS  PubMed  Google Scholar 

  122. Gupta V, Gupta A, Arora S, Sachdeva N, Bambery P. Simultaneous choroidal tuberculoma and epididymo-orchitis caused by Mycobacterium tuberculosis. Am J Ophthalmol. 2005;140(2):310–2. https://doi.org/10.1016/j.ajo.2005.01.023.

    Article  PubMed  Google Scholar 

  123. Gupta V, Gupta A, Sachdeva N, Arora S, Bambery P. Successful management of tubercular subretinal granulomas. Ocul Immunol Inflamm. 2006;14(1):35–40. https://doi.org/10.1080/09273940500269939.

    Article  PubMed  Google Scholar 

  124. Song JH, Koreishi AF, Goldstein DA. Tuberculous uveitis presenting with a bullous exudative retinal detachment: a case report and systematic literature review. Ocul Immunol Inflamm. 2019;27(6):998–1009. https://doi.org/10.1080/09273948.2018.1485958. Epub 2018 Jul 3.

    Article  PubMed  Google Scholar 

  125. Thayil SM, Albini TA, Nazari H, Moshfeghi AA, Parel JM, Rao NA, Karakousis PC. Local ischemia and increased expression of vascular endothelial growth factor following ocular dissemination of Mycobacterium tuberculosis. PLoS One. 2011;6(12):e28383. https://doi.org/10.1371/journal.pone.0028383. Epub 2011 Dec 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haimovici R, Gragoudas ES, Gregor Z, Pesavento RD, Mieler WF, Duker JS. Choroidal metastases from renal cell carcinoma. Ophthalmology. 1997;104(7):1152–8. https://doi.org/10.1016/s0161-6420(97)30169-9.

    Article  CAS  PubMed  Google Scholar 

  127. Mathis T, Jardel P, Loria O, Delaunay B, Nguyen AM, Lanza F, Mosci C, Caujolle JP, Kodjikian L, Thariat J. New concepts in the diagnosis and management of choroidal metastases. Prog Retin Eye Res. 2019;68:144–76. https://doi.org/10.1016/j.preteyeres.2018.09.003. Epub 2018 Sep 19.

    Article  PubMed  Google Scholar 

  128. Vicini G, Nicolosi C, Pieretti G, Mazzini C. Large choroidal metastasis with exudative retinal detachment as presenting manifestation of small cell lung cancer: a case report. Respir Med Case Rep. 2020;30:101074. https://doi.org/10.1016/j.rmcr.2020.101074.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Neudorfer M, Waisbourd M, Anteby I, Liran A, Goldenberg D, Barak A, Kessler A. Color flow map**: a non-invasive tool for characterizing and differentiating between uveal melanomas and choroidal metastases. Oncol Rep. 2011;25(1):91–6.

    PubMed  Google Scholar 

  130. Arroyo JG, Yang L, Bula D, Chen DF. Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol. 2005;139(4):605–10. https://doi.org/10.1016/j.ajo.2004.11.046.

    Article  PubMed  Google Scholar 

  131. Yu J, Jiang C, Xu G. Correlations between changes in photoreceptor layer and other clinical characteristics in central serous chorioretinopathy. Retina. 2019;39(6):1110–6. https://doi.org/10.1097/IAE.0000000000002092.

    Article  PubMed  Google Scholar 

  132. Gollamudi SR, Smiddy WE, Schachat AP, Michels RG, Vitale S. Long-term survival rate after vitreous surgery for complications of diabetic retinopathy. Ophthalmology. 1991;98(1):18–22. https://doi.org/10.1016/s0161-6420(91)32349-2.

    Article  CAS  PubMed  Google Scholar 

  133. Vote BJ, Gamble GD, Polkinghorne PJ. Auckland proliferative diabetic vitrectomy fellow eye study. Clin Exp Ophthalmol. 2004;32(4):397–403. https://doi.org/10.1111/j.1442-9071.2004.00845.x.

    Article  PubMed  Google Scholar 

  134. Atchison DA, Jones CE, Schmid KL, Pritchard N, Pope JM, Strugnell WE, Riley RA. Eye shape in emmetropia and myopia. Invest Ophthalmol Vis Sci. 2004;45(10):3380–6. https://doi.org/10.1167/iovs.04-0292.

    Article  PubMed  Google Scholar 

  135. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379(9827):1739–48. https://doi.org/10.1016/S0140-6736(12)60272-4.

    Article  PubMed  Google Scholar 

  136. Johnson MW. Myopic traction maculopathy: pathogenic mechanisms and surgical treatment. Retina. 2012;32(Suppl 2):S205–10. https://doi.org/10.1097/IAE.0b013e31825bc0de.

    Article  PubMed  Google Scholar 

  137. Panozzo G, Mercanti A. Vitrectomy for myopic traction maculopathy. Arch Ophthalmol. 2007;125(6):767–72. https://doi.org/10.1001/archopht.125.6.767.

    Article  PubMed  Google Scholar 

  138. Chen G, Mao S, Tong Y, Jiang F, Yang J, Li W. Fovea sparing versus complete internal limiting membrane peeling for myopic traction maculopathy: a meta-analysis. Int Ophthalmol. 2022;42(3):765–73. https://doi.org/10.1007/s10792-021-02042-2. Epub 2021 Oct 8.

    Article  PubMed  Google Scholar 

  139. Iwasaki M, Miyamoto H, Okushiba U, Imaizumi H. Fovea-sparing internal limiting membrane peeling versus complete internal limiting membrane peeling for myopic traction maculopathy. Jpn J Ophthalmol. 2020;64(1):13–21. https://doi.org/10.1007/s10384-019-00696-1. Epub 2019 Nov 4.

    Article  CAS  PubMed  Google Scholar 

  140. Barzideh N, Johnson TM. Subfoveal fluid resolves slowly after pars plana vitrectomy for tractional retinal detachment secondary to proliferative diabetic retinopathy. Retina. 2007;27(6):740–3. https://doi.org/10.1097/IAE.0b013e318030c663.

    Article  PubMed  Google Scholar 

  141. Meleth AD, Carvounis PE. Outcomes of vitrectomy for tractional retinal detachment in diabetic retinopathy. Int Ophthalmol Clin. 2014;54(2):127–39. https://doi.org/10.1097/IIO.0000000000000021.

    Article  PubMed  Google Scholar 

  142. Sokol JT, Schechet SA, Rosen DT, Ferenchak K, Dawood S, Skondra D. Outcomes of vitrectomy for diabetic tractional retinal detachment in Chicago’s county health system. PLoS One. 2019;14(8):e0220726. https://doi.org/10.1371/journal.pone.0220726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mikhail M, Ali-Ridha A, Chorfi S, Kapusta MA. Long-term outcomes of sutureless 25-G+ pars-plana vitrectomy for the management of diabetic tractional retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):255–61. https://doi.org/10.1007/s00417-016-3442-7. Epub 2016 Aug 2.

    Article  PubMed  Google Scholar 

  144. Dikopf MS, Patel KH, Setlur VJ, Lim JI. Surgical outcomes of 25-gauge pars plana vitrectomy for diabetic tractional retinal detachment. Eye (Lond). 2015;29(9):1213–9. https://doi.org/10.1038/eye.2015.126. Epub 2015 Jul 17.

    Article  CAS  PubMed  Google Scholar 

  145. Gupta A, Bansal R, Gupta V, Dogra MR. Six-month visual outcome after pars plana vitrectomy in proliferative diabetic retinopathy with or without a single preoperative injection of intravitreal bevacizumab. Int Ophthalmol. 2012;32(2):135–44. https://doi.org/10.1007/s10792-012-9541-5. Epub 2012 Mar 27.

    Article  PubMed  Google Scholar 

  146. Rush RB, Rush SW, Reinauer RM, Bastar PG, Browning DJ. Vitrectomy for diabetic complications: a pooled analysis of randomized controlled trials using modern techniques and equipment. Retina. 2022;42(7):1292–301. https://doi.org/10.1097/IAE.0000000000003471.

    Article  CAS  PubMed  Google Scholar 

  147. Rush RB, Velazquez JC, Rosales CR, Rush SW. Gas tamponade for the prevention of postoperative vitreous hemorrhaging after diabetic vitrectomy: a randomized clinical trial. Am J Ophthalmol. 2022;242:173–80. https://doi.org/10.1016/j.ajo.2022.06.015. Epub 2022 Jun 25.

    Article  PubMed  Google Scholar 

  148. Bansal R, Moharana B, Katoch D, Gupta V, Dogra MR, Gupta A. Outcome of pars plana vitrectomy in patients with retinal detachments secondary to retinal vasculitis. Indian J Ophthalmol. 2020;68(9):1905–11. https://doi.org/10.4103/ijo.IJO_551_20.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chandra P, Kumawat D, Tewari R, Sinha R. Surgical outcomes of immediate sequential bilateral vitreoretinal surgery for advancing retinopathy of prematurity. Indian J Ophthalmol. 2019;67(6):903–7. https://doi.org/10.4103/ijo.IJO_741_18.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Özdek Ş, Özmen MC, Yalınbaş D, Atalay HT, Coşkun D. Immediate sequential bilateral vitrectomy surgery for retinopathy of prematurity: a single surgeon experience. Turk J Ophthalmol. 2021;51(4):225–30. https://doi.org/10.4274/tjo.galenos.2020.07377.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yonekawa Y, Wu WC, Kusaka S, Robinson J, Tsujioka D, Kang KB, Shapiro MJ, Padhi TR, Jain L, Sears JE, Kuriyan AE, Berrocal AM, Quiram PA, Gerber AE, Paul Chan RV, Jonas KE, Wong SC, Patel CK, Abbey AM, Spencer R, Blair MP, Chang EY, Papakostas TD, Vavvas DG, Sisk RA, Ferrone PJ, Henderson RH, Olsen KR, Hartnett ME, Chau FY, Mukai S, Murray TG, Thomas BJ, Meza PA, Drenser KA, Trese MT, Capone A Jr. Immediate sequential bilateral pediatric vitreoretinal surgery: an international multicenter study. Ophthalmology. 2016;123(8):1802–8. https://doi.org/10.1016/j.ophtha.2016.04.033. Epub 2016 May 22.

    Article  PubMed  Google Scholar 

  152. Celorio JM, Pruett RC. Prevalence of lattice degeneration and its relation to axial length in severe myopia. Am J Ophthalmol. 1991;111(1):20–3. https://doi.org/10.1016/s0002-9394(14)76891-6.

    Article  CAS  PubMed  Google Scholar 

  153. Tabibian D, Hoogewoud F, Mavrakanas N, Schutz JS. Misdirected aqueous flow in rhegmatogenous retinal detachment: a pathophysiology update. Surv Ophthalmol. 2015;60(1):51–9. https://doi.org/10.1016/j.survophthal.2014.07.002. Epub 2014 Aug 10.

    Article  PubMed  Google Scholar 

  154. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, Ying GS. Posterior vitreous detachment, retinal breaks, and lattice degeneration preferred practice pattern®. Ophthalmology. 2020;127(1):P146–81. https://doi.org/10.1016/j.ophtha.2019.09.027. Epub 2019 Sep 25. Erratum in: Ophthalmology. 2020;127(9):1279.

    Article  PubMed  Google Scholar 

  155. Ripandelli G, Coppé AM, Parisi V, Olzi D, Scassa C, Chiaravalloti A, Stirpe M. Posterior vitreous detachment and retinal detachment after cataract surgery. Ophthalmology. 2007;114(4):692–7. https://doi.org/10.1016/j.ophtha.2006.08.045. Epub 2007 Jan 17.

    Article  PubMed  Google Scholar 

  156. Colin J, Robinet A, Cochener B. Retinal detachment after clear lens extraction for high myopia: seven-year follow-up. Ophthalmology. 1999;106(12):2281–4; discussion 2285. https://doi.org/10.1016/S0161-6420(99)90526-2.

    Article  CAS  PubMed  Google Scholar 

  157. Javitt JC, Tielsch JM, Canner JK, Kolb MM, Sommer A, Steinberg EP. National outcomes of cataract extraction. Increased risk of retinal complications associated with Nd:YAG laser capsulotomy. The Cataract Patient Outcomes Research Team. Ophthalmology. 1992;99(10):1487–97; discussion 1497–8. https://doi.org/10.1016/s0161-6420(92)31775-0.

    Article  CAS  PubMed  Google Scholar 

  158. Ficker LA, Vickers S, Capon MR, Mellerio J, Cooling RJ. Retinal detachment following Nd:YAG posterior capsulotomy. Eye (Lond). 1987;1(Pt 1):86–9. https://doi.org/10.1038/eye.1987.13.

    Article  PubMed  Google Scholar 

  159. Cooling RJ. Traumatic retinal detachment—mechanisms and management. Trans Ophthalmol Soc U K (1962). 1986;105(Pt 5):575–9.

    PubMed  Google Scholar 

  160. Barbosa GC, Gomes da Silva A, Rocha de Sousa J, Machado CG, Gomes AV. Enlightening new underpinnings in hydration retinal folds. Eur J Ophthalmol. 2022;32(6):3510–3. https://doi.org/10.1177/11206721221086239. Epub 2022 Mar 4.

    Article  PubMed  Google Scholar 

  161. Muni RH, Darabad MN, Oquendo PL, Hamli H, Lee WW, Nagel F, Bansal A, Melo IM, Ramachandran A. Outer retinal corrugations in rhegmatogenous retinal detachment: the retinal pigment epithelium-photoreceptor dysregulation theory. Am J Ophthalmol. 2022;245:14–24. https://doi.org/10.1016/j.ajo.2022.08.019. Epub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  162. Dalvin LA, Spaide RF, Yannuzzi LA, Freund KB, Pulido JS. Hydration folds in rhegmatogenous retinal detachment. Retin Cases Brief Rep. 2020;14(4):355–9. https://doi.org/10.1097/ICB.0000000000000711.

    Article  PubMed  Google Scholar 

  163. Majumder PD. https://www.eophtha.com/posts/documentation-drawing-in-ophthalmology. Accessed 5 Dec 2022.

  164. Lincoff H, Gieser R. Finding the retinal hole. Arch Ophthalmol. 1971;85(5):565–9. https://doi.org/10.1001/archopht.1971.00990050567007.

    Article  CAS  PubMed  Google Scholar 

  165. Nagasaki H, Shinagawa K, Mochizuki M. Risk factors for proliferative vitreoretinopathy. Prog Retin Eye Res. 1998;17(1):77–98. https://doi.org/10.1016/s1350-9462(97)00007-4.

    Article  CAS  PubMed  Google Scholar 

  166. Amsler M. The heritage of Gonin. Proc R Soc Med. 1960;53(12):1043–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lumi X, Lužnik Z, Petrovski G, Petrovski BÉ, Hawlina M. Anatomical success rate of pars plana vitrectomy for treatment of complex rhegmatogenous retinal detachment. BMC Ophthalmol. 2016;16(1):216. https://doi.org/10.1186/s12886-016-0390-2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Eshtiaghi A, Dhoot AS, Mihalache A, Popovic MM, Nichani PAH, Sayal AP, Yu HJ, Wykoff CC, Kertes PJ, Muni RH. Pars plana vitrectomy with and without supplemental scleral buckle for the repair of rhegmatogenous retinal detachment: a meta-analysis. Ophthalmol Retina. 2022;6(10):871–85. https://doi.org/10.1016/j.oret.2022.02.009. Epub 2022 Feb 26.

    Article  PubMed  Google Scholar 

  169. Dhoot AS, Popovic MM, Nichani PAH, Eshtiaghi A, Mihalache A, Sayal AP, Yu H, Wykoff CC, Kertes PJ, Muni RH. Pars plana vitrectomy versus scleral buckle: A comprehensive meta-analysis of 15,947 eyes. Surv Ophthalmol. 2022;67(4):932–49. https://doi.org/10.1016/j.survophthal.2021.12.005. Epub 2021 Dec 9.

    Article  PubMed  Google Scholar 

  170. Wolfensberger TJ, Tufail A. Systemic disorders associated with detachment of the neurosensory retina and retinal pigment epithelium. Curr Opin Ophthalmol. 2000;11(6):455–61. https://doi.org/10.1097/00055735-200012000-00012.

    Article  CAS  PubMed  Google Scholar 

  171. Roos NM, Wiegman MJ, Jansonius NM, Zeeman GG. Visual disturbances in (pre)eclampsia. Obstet Gynecol Surv. 2012;67(4):242–50. https://doi.org/10.1097/OGX.0b013e318250a457.

    Article  PubMed  Google Scholar 

  172. Jabs DA, Hanneken AM, Schachat AP, Fine SL. Choroidopathy in systemic lupus erythematosus. Arch Ophthalmol. 1988;106(2):230–4. https://doi.org/10.1001/archopht.1988.01060130240036.

    Article  CAS  PubMed  Google Scholar 

  173. da Cruz NFS, Polizelli MU, Cezar LM, Cardoso EB, Penha F, Farah ME, Rodrigues EB, Novais EA. Effects of phosphodiesterase type 5 inhibitors on choroid and ocular vasculature: a literature review. Int J Retina Vitreous. 2020;6:38. https://doi.org/10.1186/s40942-020-00241-0.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Fortes BH, Tailor PD, Dalvin LA. Ocular toxicity of targeted anticancer agents. Drugs. 2021;81(7):771–823. https://doi.org/10.1007/s40265-021-01507-z. Epub 2021 Mar 31. Erratum in: Drugs. 2022;82(3):355.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Bansal, R., Sharma, A., Kapil, A. (2023). Subretinal Fluid and Retinal Detachment. In: Ophthalmic Signs in Practice of Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-99-7923-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7923-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7922-6

  • Online ISBN: 978-981-99-7923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation