Morphology-Dependent Biosensing of Metallic Nanoparticles

  • Chapter
  • First Online:
Nanoscale Matter and Principles for Sensing and Labeling Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 206))

  • 159 Accesses

Abstract

Nanoparticles are particles with dimensions that lie within the nanoscale range, typically measured in the order of 10–9 meters. It finds its applications in diversified fields such as drug delivery, biosensing, catalysis, environment and energy. In this chapter, we will focus on the biosensing application and how effective nanoparticles are in this field. Amongst the most important factors that govern such activities are the morphologies of the nanoparticles that in turn decide their applications. We are going to focus some light on such morphology-dependent biosensing activities of metals such as gold, silver, copper, i.e. the most abundant and effective nanoparticles in different forms such as rod, wire, cubes, spheres, cages, chips, films and even at times as hybridized nanoparticles to give best results. Also, the advantages of biosensors over other competitors make the discussion noteworthy.

‘First two authors contributed equally’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schasfoort, R.B. (ed.): Handbook of Surface Plasmon Resonance. Royal Society of Chemistry (2017)

    Google Scholar 

  2. Cooper, M.A.: Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1(7), 515–528 (2002). https://doi.org/10.1038/Nrd838

    Article  CAS  PubMed  Google Scholar 

  3. Karlsson, R.: SPR for molecular interaction analysis: a review of emerging application areas. J. Mol. Recognit. 17(3), 151–161 (2004). https://doi.org/10.1002/Jmr.660

    Article  CAS  PubMed  Google Scholar 

  4. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008). https://doi.org/10.1021/Cr068107d

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y.B., Lee, S.H., Park, S.Y., Park, C.J., Lee, K.S., Kim, J., Joo, J.: Luminescence enhancement by surface plasmon assisted Förster resonance energy transfer in quantum dots and light emitting polymer hybrids with Au nanoparticles. Synth. Met. 187, 130–135 (2014). https://doi.org/10.1039/C4RA11497C

    Article  CAS  Google Scholar 

  6. Lin, H.Y., Chen, Y.F.: Giant enhancement of luminescence induced by second-harmonic surface plasmon resonance. Appl. Phys. Lett. 88(10), 101914 (2006). https://doi.org/10.1063/1.2183819

    Article  CAS  Google Scholar 

  7. Shahbazyan, T.V.: Theory of plasmon-enhanced metal photoluminescence. Nano Lett. 13(1), 194–198 (2013). https://doi.org/10.1021/Nl303851z

    Article  CAS  PubMed  Google Scholar 

  8. Turkevich, J., Garton, G., Stevenson, P.C.: The color of colloidal gold. J. Colloid Sci. 9, 26–35 (1954). https://doi.org/10.1016/0095-8522(54)90070-7

    Article  Google Scholar 

  9. Barber, D.J., Freestone, I.C.: An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32(1), 33–45 (1990)

    Article  Google Scholar 

  10. Freestone, I., Meeks, N., Sax, M., Higgitt, C.: The Lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007). https://doi.org/10.1007/BF03215599

    Article  CAS  Google Scholar 

  11. Win, M.N., Klein, J.S., Smolke, C.D.: Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res. 34(19), 5670–5682 (2006). https://doi.org/10.1093/Nar/Gkl718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Wilkop, T., Xu, D., Dong, Y., Ma, G., Cheng, Q.: Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal. Bioanal. Chem. 389(3), 819–825 (2007). https://doi.org/10.1007/S00216-007-1510x

    Article  CAS  PubMed  Google Scholar 

  13. Jayasena, S.D.: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628–1650 (1999). https://doi.org/10.1093/Clinchem/45.9.1628

    Article  CAS  PubMed  Google Scholar 

  14. Tyagi, S., Kramer, F.R.: Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14(3), 303–308 (1996). https://doi.org/10.1038/Nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  15. Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788–800 (1996). https://doi.org/10.1021/La9502711

    Article  CAS  Google Scholar 

  16. Wong, X.Y., Sena-Torralba, A., Alvarez-Diduk, R., Muthoosamy, K., Merkoçi, A.: Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano 14(3), 2585–2627 (2020). https://doi.org/10.1021/Acsnano.9b08133

    Article  CAS  PubMed  Google Scholar 

  17. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonicnanosensors. Nanosci. Technol.: Collect. Rev. Nat. J. 308–319 (2010). https://doi.org/10.1038/Nmat2162

  18. Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008). https://doi.org/10.1021/Cr068126n

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Y., Gan, Q., **n, Z., Cheng, X., Bartoli, F.J.: Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5(12), 9836–9844 (2011). https://doi.org/10.1021/Nn2034204

    Article  CAS  PubMed  Google Scholar 

  20. Shen, Y., Zhou, J., Liu, T., Tao, Y., Jiang, R., Liu, M., **ao, G., Zhu, J., Zhou, Z.K., Wang, X., **, C.: Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4(1), 1–9 (2013). https://doi.org/10.1038/Ncomms3381

    Article  Google Scholar 

  21. Khodami, M., Berini, P.: Biomolecular kinetics analysis using long-range surface plasmon waveguides. Sens. Actuators, B Chem. 243, 114–120 (2017). https://doi.org/10.1016/J.Snb.2016.11.120

    Article  CAS  Google Scholar 

  22. Fan, H., Berini, P.: Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer. J. Lightwave Technol. 34(11), 2631–2638 (2016)

    Article  CAS  Google Scholar 

  23. Lee, B., Roh, S., Park, J.: Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009). https://doi.org/10.1016/J.Yofte.2009.02.006

    Article  CAS  Google Scholar 

  24. Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahdiraji, G.A., Yun, S.H., Adikan, F.M.: Photonic crystal fiber based plasmonic sensors. Sens. Actuators, B Chem. 243, 311–325 (2017). https://doi.org/10.1016/J.Snb.2016.11.113

    Article  CAS  Google Scholar 

  25. Thanh, N.T.K., Rosenzweig, Z.: Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem. 74(7), 1624–1628 (2002). https://doi.org/10.1021/Ac011127p

    Article  CAS  PubMed  Google Scholar 

  26. Tian, L., Liu, K.K., Morrissey, J.J., Gandra, N., Kharasch, E.D., Singamaneni, S.: Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. J. Mater. Chem. B 2(2), 167–170 (2014). https://doi.org/10.1039/C3TB21551B

    Article  CAS  PubMed  Google Scholar 

  27. Kang, T.H., **, C.M., Lee, S., Choi, I.: Dual mode rapid plasmonic detections of chemical disinfectants (CMIT/MIT) using target-mediated selective aggregation of gold nanoparticles. Anal. Chem. 92(6), 4201–4208 (2020). https://doi.org/10.1021/Acs.Analchem.9b04081

    Article  CAS  PubMed  Google Scholar 

  28. Park, J.H., Ambwani, P., Manno, M., Lindquist, N.C., Nagpal, P., Oh, S.H., Leighton, C., Norris, D.J.: Single-crystalline silver films for plasmonics. Adv. Mater. 24(29), 3988–3992 (2012). https://doi.org/10.1002/Adma.201200812

    Article  CAS  PubMed  Google Scholar 

  29. Kravets, V.G., Jalil, R., Kim, Y.J., Ansell, D., Aznakayeva, D.E., Thackray, B., Britnell, L., Belle, B.D., Withers, F., Radko, I.P., Han, Z.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4(1), 1–8 (2014). https://doi.org/10.1038/Srep05517

    Article  Google Scholar 

  30. Stewart, M.E., Motala, M.J., Yao, J., Thompson, L.B., Nuzzo, R.G.: Unconventional methods for forming nanopatterns. Proc. Inst. Mech. Eng., Part N: J. Nanoeng. Nanosyst. 220(3), 81–138 (2006). https://doi.org/10.1243/17403499JNN103

    Article  Google Scholar 

  31. Tseng, A.A.: Recent developments in nanofabrication using ion projection lithography. Small 1(6), 594–608 (2005). https://doi.org/10.1002/Smll.200500113

    Article  CAS  PubMed  Google Scholar 

  32. Watt, F., Bettiol, A.A., Van Kan, J.A., Teo, E.J., Breese, M.B.H.: Ion beam lithography and nanofabrication: a review. Int. J. Nanosci. 4(03), 269–286 (2005). https://doi.org/10.1142/S0219581X05003139

    Article  CAS  Google Scholar 

  33. Faraday, M.: X. The Bakerian Lecture. Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857). https://doi.org/10.1098/Rstl.1857.0011

    Article  Google Scholar 

  34. McPeak, K.M., Jayanti, S.V., Kress, S.J., Meyer, S., Iotti, S., Rossinelli, A., Norris, D.J.: Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3), 326–333 (2015). https://doi.org/10.1021/Ph5004237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maji, S.K.: Plasmon-enhanced electrochemical biosensing of hydrogen peroxide from cancer cells by gold nanorods. ACS Appl. Nano Mater. 2(11), 7162–7169 (2019). https://doi.org/10.1021/Acsanm.9b01675

    Article  CAS  Google Scholar 

  36. Maruyama, W., Dostert, P., Matsubara, K., Naoi, M.: N-methyl (R) salsolinol produces hydroxyl radicals: involvement to neurotoxicity. Free Radical Biol. Med. 19(1), 67–75 (1995). https://doi.org/10.1016/0891-5849(95)00013-N

    Article  CAS  Google Scholar 

  37. Maji, S.K., Sreejith, S., Mandal, A.K., Ma, X., Zhao, Y.: Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 6(16), 13648–13656 (2014). https://doi.org/10.1021/Am503110s

    Article  CAS  PubMed  Google Scholar 

  38. Matharu, Z., Daggumati, P., Wang, L., Dorofeeva, T.S., Li, Z., Seker, E.: Nanoporous-gold-based electrode morphology libraries for investigating structure–property relationships in nucleic acid based electrochemical biosensors. ACS Appl. Mater. Interfaces 9(15), 12959–12966 (2017). https://doi.org/10.1021/Acsami.6b15212

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, F., Wang, S., Liu, J.: Gold nanoparticles adsorb DNA and aptamer probes too strongly and a comparison with graphene oxide for biosensing. Anal. Chem. 91(22), 14743–14750 (2019). https://doi.org/10.1021/Acs.Analchem.9b04142

    Article  CAS  PubMed  Google Scholar 

  40. Pockrand, I.: Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978). https://doi.org/10.1016/0039-6028(78)90371-0

    Article  CAS  Google Scholar 

  41. Touahir, L., Jenkins, A.T.A., Boukherroub, R., Gouget-Laemmel, A.C., Chazalviel, J.N., Peretti, J., Ozanam, F., Szunerits, S.: Surface plasmon-enhanced fluorescence spectroscopy on silver based SPR substrates. J. Phys. Chem. C 114(51), 22582–22589 (2010). https://doi.org/10.1021/Acs.Langmuir.8b00276

    Article  CAS  Google Scholar 

  42. Gan, T., Wang, Z., Shi, Z., Zheng, D., Sun, J., Liu, Y.: Graphene oxide reinforced core–shell structured Ag@ Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications. Biosens. Bioelectron. 112, 23–30 (2018). https://doi.org/10.1016/J.Bios.2018.04.029

    Article  CAS  PubMed  Google Scholar 

  43. Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S., Rafipour, A.: Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators, B Chem. 161(1), 880–885 (2012). https://doi.org/10.1016/J.Snb.2011.11.052

    Article  CAS  Google Scholar 

  44. Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., Boujday, S.: Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 9(2), 78 (2019). https://doi.org/10.3390/Bios9020078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khodashenas, B., Ghorbani, H.R.: Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 12(8), 1823–1838 (2019). https://doi.org/10.1016/J.Arabjc.2014.12.014

    Article  CAS  Google Scholar 

  46. Mahmudin, L., Suharyadi, E., Utomo, A.B.S., Abraha, K.: Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J. Mod. Phys. 6(08), 1071 (2015). https://doi.org/10.4236/Jmp.2015.68111

    Article  CAS  Google Scholar 

  47. Cobley, C.M., Skrabalak, S.E., Campbell, D.J., **a, Y.: Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4(2), 171–179 (2009). https://doi.org/10.1007/S11468-009-9088-0

    Article  CAS  Google Scholar 

  48. Haes, A.J., Van Duyne, R.P.: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124(35), 10596–10604 (2002). https://doi.org/10.1021/Ja020393x

    Article  CAS  PubMed  Google Scholar 

  49. Stavytska-Barba, M., Salvador, M., Kulkarni, A., Ginger, D.S., Kelley, A.M.: Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms. J. Phys. Chem. C 115(42), 20788–20794 (2011). https://doi.org/10.1021/Jp206853u

    Article  CAS  Google Scholar 

  50. Haes, A.J., Chang, L., Klein, W.L., Van Duyne, R.P.: Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127(7), 2264–2271 (2005). https://doi.org/10.1021/Ja044087q

    Article  CAS  PubMed  Google Scholar 

  51. Merk, V., Nerz, A., Fredrich, S., Gernert, U., Selve, S., Kneipp, J.: Optical properties of silver nanocube surfaces obtained by silane immobilization. Nanospectroscopy 1(1) (2015). https://doi.org/10.3390/Bios9020078

  52. Cheng, Y., Wang, R., Zhai, H., Sun, J.: Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/C7NR00121E

    Article  CAS  PubMed  Google Scholar 

  53. Yun, H.J., Kim, S.J., Hwang, J.H., Shim, Y.S., Jung, S.G., Park, Y.W., Ju, B.K.: Silver nanowire-IZO-conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes. Sci. Rep. 6(1), 1–12 (2016). https://doi.org/10.1038/Srep34150

    Article  CAS  Google Scholar 

  54. Hu, Z.S., Hung, F.Y., Chang, S.J., Hsieh, W.K., Chen, K.J.: Align Ag nanorods via oxidation reduction growth using RF-sputtering. J. Nanomater. 2012 (2012). https://doi.org/10.1155/2012/345086

  55. Lu, Y., Zhang, C.Y., Zhang, D.J., Hao, R., Hao, Y.W., Liu, Y.Q.: Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering. Chin. Chem. Lett. 27(5), 689-692 (2016). https://doi.org/10.1016/J.Trac.2018

  56. Jia, K., Khaywah, M.Y., Li, Y., Bijeon, J.L., Adam, P.M., Déturche, R., Guelorget, B., François, M., Louarn, G., Ionescu, R.E.: Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. ACS Appl. Mater. Interfaces 6(1), 219–227 (2014). https://doi.org/10.1021/Am403943q

    Article  CAS  PubMed  Google Scholar 

  57. Michieli, N., Kalinic, B., Scian, C., Cesca, T., Mattei, G.: Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors. Biosens. Bioelectron. 65, 346–353 (2015). https://doi.org/10.1016/J.Bios.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  58. Gao, C., Lu, Z., Liu, Y., Zhang, Q., Chi, M., Cheng, Q., Yin, Y.: Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem. Int. Ed. 51(23), 5629–5633 (2012). https://doi.org/10.1002/Anie.201108971

    Article  CAS  Google Scholar 

  59. Yang, X., Ren, Y., Gao, Z.: Silver/gold core–shell nanoprism‐based plasmonicnanoprobes for highly sensitive and selective detection of hydrogen sulfide. Chem. Eur. J. 21(3), 988–992 (2015). https://doi.org/10.1002/Chem.201405012

  60. Ma, Y., Zhou, J., Zou, W., Jia, Z., Petti, L., Mormile, P.: Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@ Ag core–shell nanorods with different thickness of Ag shell. J. Nanosci. Nanotechnol. 14(6), 4245–4250 (2014). https://doi.org/10.1166/Jnn.2014.8202

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, L., Chen, P., Loiseau, A., Brouri, D., Casale, S., Salmain, M., Boujday, S., Liedberg, B.: Spatially controlled reduction and growth of silver in hollow gold nanoshell particles. J. Phys. Chem. C 123(16), 10614–10621 (2019). https://doi.org/10.1021/Acs.Jpcc.8b11864

    Article  CAS  Google Scholar 

  62. Stebunov, Y.V., Yakubovsky, D.I., Fedyanin, D.Y., Arsenin, A.V., Volkov, V.S.: Superior sensitivity of copper-based plasmonic biosensors. Langmuir 34(15), 4681–4687 (2018). https://doi.org/10.1021/Acs.Langmuir.8b00276

    Article  CAS  PubMed  Google Scholar 

  63. Khan, R., Ahmad, R., Rai, P., Jang, L.W., Yun, J.H., Yu, Y.T., Hahn, Y.B., Lee, I.H.: Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sens. Actuators, B Chem. 203, 471–476 (2014). https://doi.org/10.1016/J.Snb.2014.06.128

    Article  CAS  Google Scholar 

  64. Giri, S.D., Sarkar, A.: Electrochemical study of bulk and monolayer copper in alkaline solution. J. Electrochem. Soc. 163(3), H252 (2016). https://doi.org/10.1149/2.0071605jes

    Article  CAS  Google Scholar 

  65. Benguigui, M., Weitz, I.S., Timaner, M., Kan, T., Shechter, D., Perlman, O., Sivan, S., Raviv, Z., Azhari, H., Shaked, Y.: Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/S41598-019-48959-8

    Article  CAS  Google Scholar 

  66. Hou, L., Shan, X., Hao, L., Feng, Q., Zhang, Z.: Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Actabiomaterialia 54, 307–320 (2017). https://doi.org/10.1016/Jactbio.2017.03.005

    Article  CAS  Google Scholar 

  67. Li, F., Lei, C., Shen, Q., Li, L., Wang, M., Guo, M., Huang, Y., Nie, Z., Yao, S.: Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale 5(2), 653–662 (2013). https://doi.org/10.1039/C2nr32156d

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Z., Han, P., Mao, X., Yin, Y., Cao, Y.: Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters. Sens. Actuators, B Chem. 238, 325–330 (2017). https://doi.org/10.1016/J.Snb.2016.07.078

    Article  CAS  Google Scholar 

  69. Peng, F., Liu, Z., Li, W., Huang, Y., Nie, Z., Yao, S.: Enzymatically generated long polyT-templated copper nanoparticles for versatile biosensing assay of DNA-related enzyme activity. Anal. Methods 7(10), 4355–4361 (2015). https://doi.org/10.1039/C5ay00423c

    Article  CAS  Google Scholar 

  70. Wang, H.B., Zhang, H.D., Chen, Y., Liu, Y.M.: A fluorescent biosensor for protein detection based on poly (thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens. Bioelectron. 74, 581–586 (2015). https://doi.org/10.1016/J.Bios.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  71. Chen, J., Ji, X., He, Z.: Smart composite reagent composed of double-stranded DNA-templated copper nanoparticle and SYBR green I for hydrogen peroxide related biosensing. Anal. Chem. 89(7), 3988–3995 (2017). https://doi.org/10.1021/Acs.Analchem.6b04484

    Article  CAS  PubMed  Google Scholar 

  72. Verma, N., Kumar, N.: Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomater. Sci. Eng. 5(3), 1170–1188 (2019). https://doi.org/10.1021/Acsbiomaterials.8b01092

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y., Yang, F., Zhang, H.X., Zi, X.Y., Pan, X.H., Chen, F., Luo, W.D., Li, J.X., Zhu, H.Y., Hu, Y.P.: Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 4(8), e783–e783 (2013). https://doi.org/10.1038/Cddis.2013.314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chawla, M., Sharma, V., Randhawa, J.K.: Facile one pot synthesis of CuO nanostructures and their effect on nonenzymatic glucose biosensing. Electrocatalysis 8(1), 27–35 (2017). https://doi.org/10.1007/S12678-016-0337-7

    Article  CAS  Google Scholar 

  75. Siddiqui, H., Qureshi, M.S., Haque, F.Z.: Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 127(11), 4726–4730 (2016). https://doi.org/10.1016/J.Ijleo.2016.01.118

    Article  CAS  Google Scholar 

  76. Ahmad, R., Vaseem, M., Tripathy, N., Hahn, Y.B.: Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal. Chem. 85(21), 10448–10454 (2013). https://doi.org/10.1021/Ac402925r

    Article  CAS  PubMed  Google Scholar 

  77. Molazemhosseini, A., Magagnin, L., Vena, P., Liu, C.C.: Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. J. Electroanal. Chem. 789, 50–57 (2017). https://doi.org/10.1016/J.Jelechem.2017.01.041

    Article  CAS  Google Scholar 

  78. Yuan, R., Li, H., Yin, X., Zhang, L., Lu, J.: Stable controlled growth of 3D CuO/Cu nanoflowers by surfactant-free method for non-enzymatic hydrogen peroxide detection. J. Mater. Sci. Technol. 34(9), 1692–1698 (2018). https://doi.org/10.1016/J.Jsmt.2017.11.030

    Article  CAS  Google Scholar 

  79. Li, D., Meng, L., **ao, P., Jiang, D., Dang, S., Chen, M.: Enhanced non-enzymatic electrochemical sensing of hydrogen peroxide based on Cu2O nanocubes/Ag-Au alloy nanoparticles by incorporation of RGO nanosheets. J. Electroanal. Chem. 791, 23–28 (2017). https://doi.org/10.1016/J.Jelechem.2017.03.010

    Article  CAS  Google Scholar 

  80. Gao, P., Liu, D.: Hydrothermal preparation of nest-like CuO nanostructures for non-enzymatic amperometric detection of hydrogen peroxide. RSC Adv. 5(31), 24625–24634 (2015). https://doi.org/10.1039/C5RA00518C

    Article  CAS  Google Scholar 

  81. Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C., Tepore, A.: A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol). Talanta 147, 124–131 (2016). https://doi.org/10.1016/j.talanta.2015.09.038

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y., Wu, D., Zhang, Y., Ren, X., Wang, Y., Ma, H., Wei, Q.: Layer-by-layer self-assembly of 2D graphene nanosheets, 3D copper oxide nanoflowers and 0D gold nanoparticles for ultrasensitive electrochemical detection of alpha fetoprotein. RSC Adv. 5(70), 56583–56589 (2015). https://doi.org/10.1039/C6RA07626B

    Article  CAS  Google Scholar 

  83. Wang, Y., Fan, D., Wu, D., Zhang, Y., Ma, H., Du, B., Wei, Q.: Simple synthesis of silver nanoparticles functionalized cuprous oxide nanowires nanocomposites and its application in electrochemical immunosensor. Sens. Actuators, B Chem. 236, 241–248 (2016). https://doi.org/10.1016/J.Snb.2016.06.021

    Article  CAS  Google Scholar 

  84. Chu, Y., Wang, H., Ma, H., Wu, D., Du, B., Wei, Q.: Sandwich-type electrochemical immunosensor for ultrasensitive detection of prostate-specific antigen using palladium-doped cuprous oxide nanoparticles. RSC Adv. 6(88), 84698–84704 (2016). https://doi.org/10.1039/C6RA13841A

    Article  CAS  Google Scholar 

  85. Feng, T., Qiao, X., Wang, H., Sun, Z., Qi, Y., Hong, C.: A porous CuO nanowire-based signal amplification immunosensor for the detection of carcinoembryonic antigens. RSC Adv. 6(21), 16982–16987 (2016). https://doi.org/10.1039/C5RA26828A

    Article  CAS  Google Scholar 

  86. Sun, G., Zhang, Y., Kong, Q., Zheng, X., Yu, J., Song, X.: CuO-induced signal amplification strategy for multiplexed photoelectrochemicalimmunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosens. Bioelectron. 66, 565–571 (2015). https://doi.org/10.1016/J.Bios.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  87. Yang, Y., Yan, Q., Liu, Q., Li, Y., Liu, H., Wang, P., Chen, L., Zhang, D., Li, Y., Dong, Y.: An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@ Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 99, 450–457 (2018). https://doi.org/10.1016/J.Bios.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  88. Ghodsi, J., Rafati, A.A., Shoja, Y., Najafi, M.: Determination of dopamine in the presence of uric acid and folic acid by carbon paste electrode modified with CuO nanoparticles/hemoglobin and multi-walled carbon nanotube. J. Electrochem. Soc. 162(4), B69 (2015)

    Google Scholar 

  89. Krishnamoorthy, K., Sudha, V., Kumar, S.M.S., Thangamuthu, R.: Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J. Alloy. Compd. 748, 338–347 (2018). https://doi.org/10.1021/Acsbiomaterials.8b01092

    Article  CAS  Google Scholar 

  90. Sivasubramanian, R., Biji, P.: Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine. Mater. Sci. Eng. B 210, 10–18 (2016). https://doi.org/10.1016/J.Mseb.2016.04.018

    Article  CAS  Google Scholar 

  91. Felix, S., Kollu, P., Raghupathy, B.P., Jeong, S.K., Grace, A.N.: Electrocatalytic oxidation of carbohydrates and dopamine in alkaline and neutral medium using CuO nanoplatelets. J. Electroanal. Chem. 739,1–9 (2015). https://doi.org/10.1016/J.Jelechem.2014.12.006

  92. Sharma, V., Mobin, S.M.: Cytocompatible peroxidase mimic CuO: graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens. Actuators, B Chem. 240, 338–348 (2017). https://doi.org/10.1016/J.Snb.2016.08.169

    Article  CAS  Google Scholar 

  93. Singh, J., Srivastava, M., Roychoudhury, A., Lee, D.W., Lee, S.H., Malhotra, B.D.: Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application. J. Phys. Chem. B 117(1), 141–152 (2013). https://doi.org/10.1021/Jp309639w

    Article  CAS  PubMed  Google Scholar 

  94. Liu, B., Ouyang, X., Ding, Y., Luo, L., Xu, D., Ning, Y.: Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146, 114–121 (2016). https://doi.org/10.1016/J.Talantta.20155.08.034

    Article  CAS  PubMed  Google Scholar 

  95. Khun, K., Ibupoto, Z.H., Liu, X., Mansor, N.A., Turner, A.P.F., Beni, V., Willander, M.: An electrochemical dopamine sensor based on the ZnO/CuOnanohybrid structures. J. Nanosci. Nanotechnol. 14(9), 6646–6652 (2014). https://doi.org/10.1166/Jnn.2014.9367

    Article  CAS  PubMed  Google Scholar 

  96. Aparna, T.K., Sivasubramanian, R., Dar, M.A.: One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloy. Compd. 741, 1130–1141 (2018). https://doi.org/10.1016/J.JALLCOM.2018.01.205

    Article  CAS  Google Scholar 

  97. Xue, Y., Yu, G., Shan, Z., Li, Z.: Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: a complete physical and biological analysis. J. Photochem. Photobiol. B. 186, 131–136 (2018). https://doi.org/10.1016/J.Jphotobiol.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  98. Joshi, A., Rastedt, W., Faber, K., Schultz, A.G., Bulcke, F., Dringen, R.: Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem. Res. 41(11), 3004–3019 (2016). https://doi.org/10.1007/S11064-016-2020-Z

    Article  CAS  PubMed  Google Scholar 

  99. Kung, M.L., Hsieh, S.L., Wu, C.C., Chu, T.H., Lin, Y.C., Yeh, B.W., Hsieh, S.: Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale 7(5), 1820–1829 (2015). https://doi.org/10.1039/C4nr05843g

    Article  CAS  PubMed  Google Scholar 

  100. Du, B.D., Phu, D.V., Quoc, L.A., Hien, N.Q.: Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles/zeolite. J. Nanopart. (2017). https://doi.org/10.1155/2017/7056864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaprasad Ankamwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, B., Yadwade, R., Ankamwar, B. (2024). Morphology-Dependent Biosensing of Metallic Nanoparticles. In: Mohanta, D., Chakraborty, P. (eds) Nanoscale Matter and Principles for Sensing and Labeling Applications. Advanced Structured Materials, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-99-7848-9_20

Download citation

Publish with us

Policies and ethics

Navigation