Development of Carbon Dots and Nanohybrids for Biosensing and Bioimaging Relevance

  • Chapter
  • First Online:
Nanoscale Matter and Principles for Sensing and Labeling Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 206))

  • 163 Accesses

Abstract

In the last few decades, fluorescent studies have become one of the most effective methods for biosensing and bioimaging. Novel fluorescent nanomaterials with tunable properties are currently in great demand for the rapid and practical analysis of biological samples. Until now, the impact of the chemical modification of the passivating molecule on the fabrication of a carbon dots (CDs) nanomaterial-based sensing probe has not been fully explored. Therefore, this book chapter examined several different precursors (such as protein, polyethylene glycol, urea, thiourea, cysteine, and glycine) to develop eco-friendly CD and doped CD formulations by bottom-up chemical synthesis approach for smart biosensors. CDs and doped CDs have received special attention in terms of low toxicity, high solubility in many solvents, chemical modification, and mechanical properties, large active surface area, abundant functional groups, and edge sites for many different organic molecules/drugs. In addition, we have investigated the properties of CDs in medicine with regards to bioimaging, switchable luminescence, and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, R., Walton, D.R.M.: The chemistry of the fullerenes. Nature 363, 685–693 (1993). https://doi.org/10.1002/9783527619214

  2. Wang, Q.H., Strano, M.S.: Carbon nanotubes: a bright future for defects. Nat. Publ. Gr. 5(10), 812–813 (2013). https://doi.org/10.1038/nchem.1768

    Article  CAS  Google Scholar 

  3. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  4. Li, H., Kang, Z., Liu, Y., Lee, S.-T.: Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22(46), 24230 (2012). https://doi.org/10.1039/c2jm34690g

    Article  CAS  Google Scholar 

  5. Kumar, V.B., Kumar, R., Friedman, O., Golan, Y., Gedanken, A., Shefi, O.: One-pot hydrothermal synthesis of elements (B, N, P)-doped fluorescent carbon dots for cell labelling, differentiation and outgrowth of neuronal cells. ChemistrySelect 4(14), 4222–4232 (2019). https://doi.org/10.1002/slct.201900581

    Article  CAS  Google Scholar 

  6. Wang, R., Lu, K.-Q., Tang, Z.-R., Xu, Y.-J.: Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 5(8), 3717–3734 (2017). https://doi.org/10.1039/C6TA08660H

    Article  CAS  Google Scholar 

  7. Yu, X., Liu, J., Yu, Y., Zuo, S., Li, B.: Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon N. Y. 68, 718–724 (2014). https://doi.org/10.1016/j.carbon.2013.11.053

    Article  CAS  Google Scholar 

  8. Kumar, V.B., Tang, J., Lee, K.J., Pol, V.G., Gedanken, A.: In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Adv. 6(70), (2016). https://doi.org/10.1039/c6ra09926b

  9. Khadijeh Nekoueian, S., Amiri, M., Sillanpa, M., Marken, F., Boukherroub, R., Sabine: Chem Soc Rev Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem. Soc. Rev. 48, 4281–4316, (2019). https://doi.org/10.1039/c8cs00445e

  10. Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N., Chen, L.: Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens. Actuators, B Chem. 192, 488–495 (2014). https://doi.org/10.1016/j.snb.2013.11.041

    Article  CAS  Google Scholar 

  11. Lawrence, K., et al.: Functionalized carbon nanoparticles, blacks and soots as electron-transfer building blocks and conduits. Chem. Asian J. 1226–1241 (2014). https://doi.org/10.1002/asia.201301657

  12. Gayen, B., Palchoudhury, S., Chowdhury, J.: Review article carbon dots: a mystic star in the world of nanoscience. J. Nanomater. 2019, 19 (2019)

    Article  Google Scholar 

  13. Kumar, V.B., Sahu, A.K., Mohsin, A.S.M., Li, X., Gedanken, A.: Refractive-index tuning of highly fluorescent carbon dots. ACS Appl. Mater. Interfaces 9(34), 28930–28938 (2017). https://doi.org/10.1021/acsami.7b08985

    Article  CAS  PubMed  Google Scholar 

  14. Tangy, A., Kumar, V.B., Pulidindi, I.N., Kinel-Tahan, Y., Yehoshua, Y., Gedanken, A.: In-situ transesterification of Chlorella vulgaris using carbon-dot functionalized strontium oxide as a heterogeneous catalyst under microwave irradiation. Energy Fuels 30(12), 10602–10610 (2016). https://doi.org/10.1021/acs.energyfuels.6b02519

    Article  CAS  Google Scholar 

  15. Kumar, V.B., Sahu, A.K., Mohsin, A.S.M., Li, X., Gedanken, A.: Refractive-index tuning of highly fluorescent carbon dots. ACS Appl. Mater. Interfaces 9(34), (2017). https://doi.org/10.1021/acsami.7b08985

  16. Zhang, J., Yu, S.H.: Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016). https://doi.org/10.1016/j.mattod.2015.11.008

    Article  CAS  Google Scholar 

  17. Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015). https://doi.org/10.1002/smll.201402648

    Article  CAS  PubMed  Google Scholar 

  18. Luo, P.G., et al.: Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 4(21), 10791–10807 (2014). https://doi.org/10.1039/C3RA47683A

    Article  CAS  Google Scholar 

  19. Baker, S.N., Baker, G.: Luminescent carbon nanodots: emergent nanolights. Angew. Chemie Int. Ed. 49(38), 6726–6744 (2010). https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  20. Kumar, V.B., Porat, Z., Gedanken, A.: Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrason. Sonochem. 28, 367–375 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, V.B., Kumar, R., Gedanken, A., Shefi, O.: Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason. Sonochem. 52, 205–213 (2019). https://doi.org/10.1016/j.ultsonch.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  22. El-Shafey, A.M.: Carbon dots: discovery, structure, fluorescent properties, and applications. Green Process. Synth. 10, 134–156 (2021)

    Google Scholar 

  23. Kainth, S., Maity, B., Soumen, B.: RSC Advances passivated fluorescent carbon dots. RSC Adv. 10, 36253–36264 (2020). https://doi.org/10.1039/d0ra06512a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar, R., Kumar, V.B., Gedanken, A.: Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason. Sonochem. 64(September 2019), 105009 (2020). https://doi.org/10.1016/j.ultsonch.2020.105009

  25. De Medeiros, T.V., Manioudakis, J., Noun, F., Macairan, J.R., Victoria, F., Naccache, R.: Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 7(24), 7175–7195 (2019). https://doi.org/10.1039/c9tc01640f

    Article  CAS  Google Scholar 

  26. Xu, X., et al.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  27. Liu, M., Xu, Y., Niu, F., Gooding, J.J., Liu, J.: Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141(9), 2657–2664 (2016). https://doi.org/10.1039/c5an02231b

    Article  CAS  PubMed  Google Scholar 

  28. De, B., Karak, N.: Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J. Mater. Chem. A 5(5), 1826–1859 (2017). https://doi.org/10.1039/C6TA10220D

    Article  CAS  Google Scholar 

  29. Kumar, V.B., Porat, Z.: Synthesis of doped/hybrid carbon dots and their biomedical application. Nanomaterials 12, 898 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, V.B., Kumar, R., Gedanken, A., Shefi, O.: Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason. Sonochem. 52(November 2018), 205–213 (2019). https://doi.org/10.1016/j.ultsonch.2018.11.017

  31. Kumar, V.B., et al.: Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J. Phys. Chem. C 120(25), 13406–13413 (2016). https://doi.org/10.1021/acs.jpcc.6b04045

    Article  CAS  Google Scholar 

  32. Khajuria, D.K., Kumar, V.B., Gigi, D., Gedanken, A., Karasik, D.: Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles. ACS Appl. Mater. Interfaces 10(23), 19373–19385 (2018). https://doi.org/10.1021/acsami.8b02792

    Article  CAS  PubMed  Google Scholar 

  33. El-Shabasy, R.M., Elsadek, M.F., Ahmed, B.M., Farahat, M.F., Mosleh, K.M., Taher, M.M.: Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications. Processes 9(2), 1–24 (2021). https://doi.org/10.3390/pr9020388

    Article  CAS  Google Scholar 

  34. Kumar, V.B., Sheinberger, J., Porat, Z., Shav-Tal, Y., Gedanken, A.: A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. J. Mater. Chem. B 4(17), 2913–2920 (2016). https://doi.org/10.1039/c6tb00519e

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, V.B., Perkas, N., Porat, Z., Gedanken, A.: Solar-light-driven photocatalytic activity of novel Sn@C-Dots-Modified TiO2 catalyst. ChemistrySelect 2(23), 6683–6688 (2017). https://doi.org/10.1002/slct.201701375

    Article  CAS  Google Scholar 

  36. Lai, C.W., Hsiao, Y.H., Peng, Y.K., Chou, P.T.: Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 22(29), 14403–14409 (2012). https://doi.org/10.1039/c2jm32206d

    Article  CAS  Google Scholar 

  37. Kumar, V.B., et al.: Ultrafine highly magnetic fluorescent γ-Fe2O3/NCD nanocomposites for neuronal manipulations. ACS Omega 3(2), 1897–1903 (2018). https://doi.org/10.1021/acsomega.7b01666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khajuria, D.K., Kumar, V.B., Karasik, D., Gedanken, A.: Fluorescent nanoparticles with tissue-dependent affinity for live zebrafish imaging. ACS Appl. Mater. Interfaces 9(22), 18557–18565 (2017). https://doi.org/10.1021/acsami.7b04668

    Article  CAS  PubMed  Google Scholar 

  39. Ge, J., Li, Y., Wang, J., Pu, Y., Xue, W., Liu, X.: Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. J. Alloys Compd. 663, 166–171 (2016). https://doi.org/10.1016/j.jallcom.2015.12.055

    Article  CAS  Google Scholar 

  40. Kumar, V.B., Perelshtein, I., Lipovsky, A., Porat, Z., Gedanken, A.: The sonochemical synthesis of Ga@C-dots particles. RSC Adv. 5(32), 25533–25540 (2015). https://doi.org/10.1039/c5ra01101a

    Article  CAS  Google Scholar 

  41. Kumar, V.B., Pol, V., Tang, J., Lee, K.J., Gedanken, A.: In situ sonochemical synthesis of luminescent Sn@C-dots and hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Adv. 6, 66256–66265 (2016). https://doi.org/10.1039/C6RA09926B

    Article  CAS  Google Scholar 

  42. Ngo, Y.L.T., Nguyen, P.L., Jana, J., Choi, W.M., Chung, J.S., Hur, S.H.: Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures. Anal. Chim. Acta 1147(xxxx), 187–198 (2021). https://doi.org/10.1016/j.aca.2020.11.023

  43. Li, P., Li, S.F.Y.: Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics 10(2), 877–908 (2021). https://doi.org/10.1515/nanoph-2020-0507

    Article  CAS  Google Scholar 

  44. Cui, X., et al.: A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury(II) detection. Biosens. Bioelectron. 63, 506–512 (2015). https://doi.org/10.1016/j.bios.2014.07.085

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Zhang, J., Zou, W., Wang, R.: Facile synthesis of polyaniline/carbon dot nanocomposites and their application as a fluorescent probe to detect mercury. RSC Adv. 5, 41914–41919 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  46. Guo, X., et al.: Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 219, 15–22 (2019). https://doi.org/10.1016/j.saa.2019.02.017

  47. Sharma, A., Das, J.: Small molecules derived carbon dots : synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnol. 1–24 (2019). https://doi.org/10.1186/s12951-019-0525-8

  48. Cui, L., Ren, X., Sun, M., Liu, H., **a, L.: Carbon dots: synthesis, properties and applications. Nanomaterials 11, 3419 (2021). https://doi.org/10.3390/nano11123419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, M., et al.: Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 19, 201–218 (2018). https://doi.org/10.1016/j.nantod.2018.02.008

    Article  CAS  Google Scholar 

  50. Li, Y.H., Zhang, L., Huang, J., Liang, R.P., Qiu, J.D.: Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem. Commun. 49(45), 5180–5182 (2013). https://doi.org/10.1039/c3cc40652k

    Article  CAS  Google Scholar 

  51. Zhi-bei, Q., et al.: Boronic acid functionalized graphene quantum dots as fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem. Commun. 49, 9830–9832 (2013). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  52. Shen, P., **a, Y.: Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 86(11), 5323–5329 (2014). https://doi.org/10.1021/ac5001338

    Article  CAS  PubMed  Google Scholar 

  53. Kiran, S., Misra, R.D.K.: Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J. Biomed. Mater. Res. Part A 103(9), 2888–2897 (2015). https://doi.org/10.1002/jbm.a.35421

    Article  CAS  Google Scholar 

  54. Sun, H., Wu, L., Wei, W., Qu, X.: Recent advances in graphene quantum dots for sensing. Mater. Today 16(11), 433–442 (2013). https://doi.org/10.1016/J.MATTOD.2013.10.020

    Article  CAS  Google Scholar 

  55. Ma, N., Jiang, W., Li, T., Zhang, Z., Qi, H., Yang, M.: Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim. Acta 182(1–2), 443–447 (2015). https://doi.org/10.1007/s00604-014-1386-3

    Article  CAS  Google Scholar 

  56. Wang, Y., Qi, W., Song, Y.: Antibody-free detection of protein phosphorylation using intrinsic peroxidase-like activity of platinum/carbon dot hybrid nanoparticles. Chem. Commun. 52(51), 7994–7997 (2016). https://doi.org/10.1039/C6CC02771G

    Article  CAS  Google Scholar 

  57. Zhu, A., Qu, Q., Shao, X., Kong, B., Tian, Y.: Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chemie Int. Ed. 51(29), 7185–7189 (2012). https://doi.org/10.1002/anie.201109089

    Article  CAS  Google Scholar 

  58. Liu, Y., et al.: Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe 3+ ions in complex biological fluids and living cells. ACS Appl. Mater. Interfaces 9(14), 12663–12672 (2017). https://doi.org/10.1021/acsami.6b15746

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Q., et al.: Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens. Bioelectron. 64, 119–125 (2015). https://doi.org/10.1016/j.bios.2014.08.052

    Article  CAS  PubMed  Google Scholar 

  60. Jia, Q., et al.: A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 30(13), 1706090 (2018). https://doi.org/10.1002/adma.201706090

    Article  CAS  Google Scholar 

  61. Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., Wang, J.: Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016). https://doi.org/10.1016/j.bios.2016.04.089

    Article  CAS  PubMed  Google Scholar 

  62. Nandi, S., Ritenberg, M., Jelinek, R.: Bacterial detection with amphiphilic carbon dots. Analyst 140(12), 4232–4237 (2015). https://doi.org/10.1039/c5an00471c

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, S., et al.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chemie Int. Ed. 52(14), 3953–3957 (2013). https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  64. Fernando, K.A.S., et al.: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7(16), 8363–8376 (2015). https://doi.org/10.1021/acsami.5b00448

    Article  CAS  PubMed  Google Scholar 

  65. Park, S.Y., et al.: Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale 9(26), 9210–9217 (2017). https://doi.org/10.1039/c7nr03026f

    Article  CAS  PubMed  Google Scholar 

  66. Li, Z., Ptak, D., Zhang, L., Walls, E.K., Zhong, W., Leung, Y.F.: Phenylthiourea specifically reduces zebrafish eye size. PLoS One 7(6), 1–14 (2012). https://doi.org/10.1371/journal.pone.0040132

    Article  CAS  Google Scholar 

  67. Kumar, V.B., Natan, M., Jacobi, G., Porat, Z., Banin, E., Gedanken, A.: Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa. Int. J. Nanomed. 12, 725–730 (2017). https://doi.org/10.2147/IJN.S116150

    Article  CAS  Google Scholar 

  68. Sun, Y.-P., et al.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  69. Cao, L., et al.: Carbon dots for multiphoton bioimaging. (2007). https://doi.org/10.1021/JA073527L

  70. Kumar, V.B., Dolitzky, A., Michaeli, S., Gedanken, A.: Antiparasitic ointment based on a biocompatibile carbon dot nanocomposite. ACS Appl. Nano Mater. 1(4), 1784–1791 (2018). https://doi.org/10.1021/acsanm.8b00213

    Article  CAS  Google Scholar 

  71. Zheng, F.-F., Zhang, P.-H., **, Y., Chen, J.-J., Li, L.-L., Zhu, J.-J.: Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal. Chem. 87(23), 11739–11745 (2015). https://doi.org/10.1021/acs.analchem.5b03131

    Article  CAS  PubMed  Google Scholar 

  72. Yang, S.-T., et al.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131(32), 11308–11309 (2009). https://doi.org/10.1021/ja904843x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, M.C., et al.: Highly photoluminescent N-isopropylacrylamide (NIPAAM) passivated carbon dots for multicolor bioimaging applications. Eur. Polym. J. 98(November 2017), 191–198 (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.018

  74. Tao, H., et al.: In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012). https://doi.org/10.1002/smll.201101706

    Article  CAS  PubMed  Google Scholar 

  75. Huang, G., Su, C., Wang, L., Fei, Y., Yang, J.: The application of nucleic acid probe-based fluorescent sensing and imaging in cancer diagnosis and therapy. Front. Chem. 9(June), 1–10 (2021). https://doi.org/10.3389/fchem.2021.705458

    Article  CAS  Google Scholar 

  76. Zhang, J., et al.: Structure of the zein protein as treated with subcritical water. Int. J. Food Prop. 21(1), 128–138 (2018). https://doi.org/10.1080/10942912.2017.1414839

    Article  CAS  Google Scholar 

  77. Gao, T., et al.: A peptide nucleic acid–regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Microchim. Acta 187(7), (2020). https://doi.org/10.1007/s00604-020-04357-w

  78. Peng, C., et al.: Afterglow carbon dots: from fundamentals to applications. Research 2021, 1–27 (2021). https://doi.org/10.34133/2021/6098925

    Article  CAS  Google Scholar 

  79. Jiang, X., Zong, S., Chen, C., Zhang, Y., Wang, Z., Cui, Y.: Gold-carbon dots for the intracellular imaging of cancer-derived exosomes. Nanotechnology 29(17), 175701 (2018). https://doi.org/10.1088/1361-6528/aaaf14

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Bhooshan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V.B., Mohanta, D. (2024). Development of Carbon Dots and Nanohybrids for Biosensing and Bioimaging Relevance. In: Mohanta, D., Chakraborty, P. (eds) Nanoscale Matter and Principles for Sensing and Labeling Applications. Advanced Structured Materials, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-99-7848-9_16

Download citation

Publish with us

Policies and ethics

Navigation