Perovskite Nanomaterials as Advanced Optical Sensor

  • Chapter
  • First Online:
Nanoscale Matter and Principles for Sensing and Labeling Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 206))

  • 179 Accesses

Abstract

Perovskite quantum dots (PeQDs) with ultra-small crystal size of a few nanometers are a unique class of luminescent materials having excellent optical properties including narrow and bright emission, color purity, tunable emission, defect tolerance capacity, and very high photoluminescence quantum yield. The physical and chemical nature of perovskite nanocrystals changes with various environmental variables like temperature, moisture, gases, solvents, etc. All these unique features of PeQDs have allowed them to serve as ideal probes for a variety of sensing applications. Among various sensing methods, optical sensing is one of the promising sensing methods due to its simplicity, effective, and low-cost method which occurs via electron transfer, FRET, and ion exchange mechanism. Here, in this chapter, we have discussed various preparation methods of perovskite nanomaterials and their optical sensing mechanism along with their applications which explains the reason why these nanomaterials are been widely used as sensing materials. Although PeQDs are one of the most preferred sensing materials, it has their own limitations which have been discussed in the conclusion section along with their remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S. G., et al.: Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013)

    Google Scholar 

  2. Assirey, E.A.R.: Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 27(6), 817–829 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, B., Zhang, Y., Fu, L., Yu, T., Zhou, S., Zhang, L., Yin, L.: Surface passivation engineering strategy to fully inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1–8 (2018)

    Google Scholar 

  4. Shi, Z., Li, Y., Zhang, Y., Chen, Y., Li, X., Wu, D., Xu, T., Shan, C., Du, G.: High-efficiency, and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 17, 313–321 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, H., Wang, X., Liao, Q., Xu, Z., Li, H., Zheng, Fu, H.: Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv. Funct. Mater. 27, 1604382 (2017)

    Google Scholar 

  6. Huangfu, C., Feng, L.: High-performance fluorescent sensor based on CsPbBr3 quantum dots for rapid analysis of total polar materials in edible oils. Sens. Actuat. B: Chem. 130193 (2021)

    Google Scholar 

  7. Ren, K., Huang, L., Yue, S., Lu, S., Liu, K., Azam, M., Wang, Z.: Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors. J. Mater. Chem. C 5(10), 2504–2508 (2017)

    Article  CAS  Google Scholar 

  8. Weng, Z., Qin, J., Umar, A.A., Wang, J., Zhang, X., Wang, H., et al.: Lead‐free Cs2BiAgBr6 double perovskite‐based humidity sensor with superfast recovery time. Adv. Funct. Mater. 29(24), 1902234 (2019)

    Google Scholar 

  9. Sheng, X., Liu, Y., Wang, Y., Li, Y., Wang, X., Wang, X., et al.: Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions. Adv. Mater. 29(37), 1700150 (2017)

    Google Scholar 

  10. Wang, S., Yousefi Amin, A.A., Wu, L., Cao, M., Zhang, Q., Ameri, T.: Perovskite nanocrystals: synthesis, stability, and optoelectronic applications. Small Struct. 2(3), 2000124 (2021)

    Article  CAS  Google Scholar 

  11. Murray, C., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)

    Article  CAS  Google Scholar 

  12. Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V.: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): n ovel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, L.C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Minguez Espallargas, G., et al.: Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136(3), 850–853 (2014)

    Google Scholar 

  14. Zhang, F., Zhong, H., Chen, C., Wu, X. G., Hu, X., Huang, H., et al.: Brightly luminescent and color tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015)

    Google Scholar 

  15. Huang, H., Zhao, F., Liu, L., Zhang, F., Wu, X.G., Shi, L., et al.: Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7(51), 28128–28133 (2015)

    Google Scholar 

  16. Jang, D.M., Kim, D.H., Park, K., Park, J., Lee, J.W., Song, J.K.: Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4(45), 10625–10629 (2016)

    Article  CAS  Google Scholar 

  17. Long, Z., Ren, H., Sun, J., Ouyang, J., Na, N.: High-throughput and tunable synthesis of colloidal CsPbX3 perovskite nanocrystals in a heterogeneous system by microwave irradiation. Chem. Commun. 53(71), 9914–9917 (2017)

    Article  CAS  Google Scholar 

  18. Lobnik, A., Turel, M., Urek, S.K.: Optical chemical sensors: design and applications. Adv. Chem. Sens. 3–28 (2012)

    Google Scholar 

  19. Lakowicz, J.R. (ed.).: Principles of Fluorescence Spectroscopy. Springer Science & Business Media (2013)

    Google Scholar 

  20. Halali, V.V., Sanjayan, C.G., Suvina, V., Sakar, M., Balakrishna, R.G.: Perovskite nanomaterials as optical and electrochemical sensors. Inorg. Chem. Front. 7(14), 2702–2725 (2020)

    Article  Google Scholar 

  21. Wang, Y., Zhu, Y., Huang, J., Cai, J., Zhu, J., Yang, X., et al.: Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2(4), 225–232 (2017)

    Google Scholar 

  22. Zhu, Z., Sun, Q., Zhang, Z., Dai, J., **ng, G., Li, S., et al.: Metal halide perovskites: stability and sensing-ability. J. Mater. Chem. C 6(38), 10121–10137 (2018)

    Google Scholar 

  23. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5(9), 763–775 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Moseley, P.T.: Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28(8), 082001 (2017)

    Article  Google Scholar 

  25. Malik, L.A., Bashir, A., Qureashi, A., Pandith, A.H.: Detection and removal of heavy metal ions: a review. Environ. Chem. Lett. 17(4), 1495–1521 (2019)

    Article  CAS  Google Scholar 

  26. Park, B., Kang, S.M., Lee, G.W., Kwak, C.H., Rethinasabapathy, M., Huh, Y.S.: Fabrication of CsPbBr3 Perovskite quantum dots/cellulose-based colorimetric sensor: dual-responsive on-site detection of chloride and iodide ions. Ind. Eng. Chem. Res. 59(2), 793–801 (2019)

    Article  Google Scholar 

  27. Lu, L.Q., Tan, T., Tian, X.K., Li, Y., Deng, P.: Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots. Anal. Chim. Acta 986, 109–114 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y., Tang, X., Zhu, T., Deng, M., Ikechukwu, I. P., Huang, W., et al.: All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu 2+ detection. J. Mater. Chem. C, 6(17), 4793–4799 (2018)

    Google Scholar 

  29. Ding, N., Zhou, D., Pan, G., Xu, W., Chen, X., Li, D., et al.: Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+ detection. ACS Sustain. Chem. Eng. 7(9), 8397–8404 (2019)

    Google Scholar 

  30. Wu, P., He, Q., Zhu, D., Jiang, H., Jiao, Z., Zhang, Y., et al.: Highly efficient fluorescent and colorimetric sensing of organic amine vapors based on organometal halide perovskite nanostructures. Anal. Methods 9(25), 3804–3809 (2017)

    Google Scholar 

  31. Kim, S.H., Kirakosyan, A., Choi, J., Kim, J.H.: Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticles. Dyes Pigm. 147, 1–5 (2017)

    Article  CAS  Google Scholar 

  32. Huang, Y., Wang, S., Zhu, Y., Li, F., **, J., Dong, J., et al.: Dual-mode of fluorescence turn-on and wavelength-shift for methylamine gas sensing based on space-confined growth of methylammonium lead tribromide perovskite nanocrystals. Anal. Chem. 92(8), 5661–5665 (2020)

    Google Scholar 

  33. Zhao, Y., Zhu, K.: Optical bleaching of perovskite (CH3 NH3) PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. 50(13), 1605–1607 (2014)

    Article  CAS  Google Scholar 

  34. Chen, X., Hu, H., **a, Z., Gao, W., Gou, W., Qu, Y., Ma, Y.: CsPbBr 3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J. Mater. Chem. C 5(2), 309–313 (2017)

    Article  CAS  Google Scholar 

  35. You, X., Wu, J., Chi, Y.: Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum Dots for reversible sensing of SO2 in a 3D-printed gas cell. Anal. Chem. 91, 5058–5066 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. Xu, W., Li, F., Cai, Z., Wang, Y., Luo, F., Chen, X.: An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH3NH3PbBr3. J. Mater. Chem. C 4(41), 9651–9655 (2016)

    Article  CAS  Google Scholar 

  37. Li, X., Yu, Y., Hong, J., Feng, Z., Guan, X., Chen, D., Zheng, Z.: Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr 3 perovskite quantum dots. J. Lumin. 219, 116897 (2020)

    Article  CAS  Google Scholar 

  38. Yang, Q., Zhao, L., Fang, Z., Yang, Z., Cao, J., Cai, Y., et al.: Transparent perovskite glass-ceramics for visual optical thermometry. J. Rare Earths 39(6), 712–717 (2021)

    Google Scholar 

  39. Liu, J., Zhao, Y., Li, X., Wu, J., Han, Y., Zhang, X., Xu, Y.: Dual-emissive CsPbBr3@ Eu-BTC composite for self-calibrating temperature sensing application. Cryst. Growth Des. 20(1), 454–459 (2019)

    Article  Google Scholar 

  40. Aznar, E., Sanchez-Alarcon, I., Cantó, P.J.R., Perez-Pla, F., Martínez-Pastor, J.P., Abargues, R.: Molecularly imprinted nanocomposites of CsPbBr3 nanocrystals: an approach towards fast and selective gas sensor of explosive taggants. J. Mater. Chem. C (2022)

    Google Scholar 

  41. Chen, X., Sun, C., Liu, Y., Yu, L., Zhang, K., Asiri, A.M., et al.: All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chem. Eng. J. 379, 122360 (2020)

    Google Scholar 

  42. Aamir, M., Khan, M.D., Sher, M., Bhosale, S.V., Malik, M.A., Akhtar, J., Revaprasadu, N.: A facile route to cesium lead bromoiodide perovskite microcrystals and their potential application as sensors for nitrophenol explosives. Eur. J. Inorg. Chem. 2017(31), 3755–3760 (2017)

    Article  CAS  Google Scholar 

  43. **ng, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., et al.: Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)

    Google Scholar 

  44. Muthu, C., Nagamma, S.R., Nair, V.C.: Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol. RSC Adv. 4(99), 55908–55911 (2014)

    Article  CAS  Google Scholar 

  45. Harwell, J.R., Glackin, J.M.E., Davis, N.J.L.K., Gillanders, R.N., Credgington, D., Turnbull, G.A., Samuel, I.D.W.: Sensing of explosive vapor by hybrid perovskites: effect of dimensionality. APL Mater. 8(7), 071106 (2020)

    Article  CAS  Google Scholar 

  46. Shan, X., Zhang, S., Zhou, M., Geske, T., Davis, M., Hao, A., et al.: Porous halide perovskite–polymer nanocomposites for explosive detection with a high sensitivity. Adv. Mater. Interfaces 6(3), 1801686 (2019)

    Google Scholar 

  47. Aamir, M., Sher, M., Malik, M.A., Akhtar, J., Revaprasadu, N.: A chemodosimetric approach for the selective detection of Pb2+ ions using a cesium-based perovskite. New J. Chem. 40, 9719 (2016)

    Article  CAS  Google Scholar 

  48. Zhang, D., Xu, Y., Liu, Q., **a, Z.: Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection. Inorg. Chem.. Chem. 57, 4613–4619 (2018)

    Article  CAS  Google Scholar 

  49. Chen, C., Cai, Q., Luo, F., Dong, N., Guo, L., Qiu, B., Lin, Z.: Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots. Anal. Chem. 91, 15915–15921 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Dolui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, S., Lahkar, S., Dolui, S.K. (2024). Perovskite Nanomaterials as Advanced Optical Sensor. In: Mohanta, D., Chakraborty, P. (eds) Nanoscale Matter and Principles for Sensing and Labeling Applications. Advanced Structured Materials, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-99-7848-9_10

Download citation

Publish with us

Policies and ethics

Navigation