iCardo 3.0: A Machine Learning Framework for Prediction of Conduction Disturbance in Heart

  • Conference paper
  • First Online:
Data Science and Applications (ICDSA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 821))

Included in the following conference series:

  • 111 Accesses

Abstract

One of the leading causes of mortality in the world is cardiovascular disease. Electrocardiography (ECG) is a non-invasive tool for assessing heart function abnormalities. The paper presents the prediction of conduction disturbance or disorders (CD) which lead to chronic heart failure or cardiac arrest through a 12-lead electrocardiogram (ECG). A publicly available large electrocardiography data set named PTB-XL is used in the study. Bagging and boosting-based machine learning algorithms, i.e. random forest (RF) and XGBoost along with the support vector machine (SVM), have been used to classify the CD and normal subjects. Two demographic features, age and sex of the subject, have been added to the ECG to prepare the final data for the input of the classifiers. The performance in terms of accuracy with random forest (RF) and XGBoost performance is similar, whereas the total number of true predictions is higher in the case of RF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart conduction disorders. https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia/conduction-disorders. Accessed: 14 May 2023

  2. A.L. Goldberger et al., Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  3. V. Auffret, R. Puri, M. Urena, C. Chamandi, T. Rodriguez-Gabella, F. Philippon, J. Rodes-Cabau, Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation 136(11), 1049–1069 (2017)

    Article  Google Scholar 

  4. F. Crea, Novel risk factors for atrial fibrillation, conduction disturbances, sudden coronary death, and device infection. Eur. Heart J. 43(47), 4853–4857 (2022). https://doi.org/10.1093/eurheartj/ehac734

  5. J.A. Diamond, R.A. Phillips, Hypertensive heart disease. Hypertens. Res. 28(3), 191–202 (2005)

    Article  Google Scholar 

  6. A.S.M. Faizal, T.M. Thevarajah, S.M. Khor, S.W. Chang, A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. Comput. Methods Prog. Biomed. 207, 106190 (2021)

    Google Scholar 

  7. V. Galli et al., Towards patient-specific prediction of conduction abnormalities induced by transcatheter aortic valve implantation: a combined mechanistic modelling and machine learning approach. Eur. Heart J. Digit. Health 606–615 (2021)

    Google Scholar 

  8. H. Huang, J. Liu, Q. Zhu, R. Wang, G. Hu, Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers. Biomed. Eng. Online 13, 1–22 (2014)

    Article  Google Scholar 

  9. P. Kaur, R. Kumar, M. Kumar, A healthcare monitoring system using random forest and internet of things (IoT). Multimedia Tools Appl. 78, 19905–19916 (2019)

    Article  Google Scholar 

  10. K. Singh et al., Machine learning algorithms for atrioventricular conduction defects prediction using ECG: a comparative study, in 2022 IEEE Delhi Section Conference (DELCON) (2022), pp. 1–5

    Google Scholar 

  11. S. Meghna, A.M. Joshi, Real-time ECG based authentication using hardware accelerated implementation on ZYNQ SOC, in 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS) (IEEE, 2019), pp. 99–104

    Google Scholar 

  12. A.A. Nancy, D. Ravindran, P.D. Raj Vincent, K. Srinivasan, D. Gutierrez Reina, Iot-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning. Electronics 11(15), 2292 (2022)

    Google Scholar 

  13. A.A. Nancy, D. Ravindran, D.R. Vincent, K. Srinivasan, C.Y. Chang, Fog-based smart cardiovascular disease prediction system powered by modified gated recurrent unit. Diagnostics 13(12), 2071 (2023)

    Article  Google Scholar 

  14. M. Pal, S. Parija, G. Panda, K. Dhama, R.K. Mohapatra, Risk prediction of cardiovascular disease using machine learning classifiers. Open Med. 17(1), 1100–1113 (2022)

    Article  Google Scholar 

  15. S. Pancholi, A.M. Joshi, D. Joshi, A robust and accurate deep learning based pattern recognition framework for upper limb prosthesis using SEMG (2021). ar**v preprint ar**v:2106.02463

  16. P. Wagner et al., PTB-XL, a large publicly available electrocardiography dataset. Sci. Data 7(1), 154 (2020). https://doi.org/10.1038/s41597-020-0495-6

    Article  Google Scholar 

  17. Y. Sammour, S.R. Kapadia, Conduction disturbance after TAVR. Cardiac. Interv. https://citoday.com/articles/2022-mar-apr/conduction-disturbance-after-tavr

  18. A. Shah, S. Ahirrao, S. Pandya, K. Kotecha, S. Rathod, Smart cardiac framework for an early detection of cardiac arrest condition and risk. Front. Public Health 9, 762303 (2021)

    Article  Google Scholar 

  19. G. Sharma, A.M. Joshi, R. Gupta, L.R. Cenkeramaddi, DepCap: a smart healthcare framework for EEG based depression detection using time-frequency response and deep neural network. IEEE Access (2023)

    Google Scholar 

  20. N. Sinha, T. Jangid, A.M. Joshi, S.P. Mohanty, ICARDO: a machine learning based smart healthcare framework for cardiovascular disease prediction (2022). ar**v preprint ar**v:2212.08022

  21. N. Sinha, A.M. Joshi, S.P. Mohanty, ICARDO 2.0: a smart healthcare framework for cardiovascular disease accurate prediction by using t-wave morphology of ECG, in 2022 IEEE International Symposium on Smart Electronic Systems (iSES) (IEEE, 2022), pp. 343–348

    Google Scholar 

  22. S. Subramani, N. Varshney, M.V. Anand, M.E.M. Soudagar, L.A. Al-Keridis, T.K. Upadhyay, N. Alshammari, M. Saeed, K. Subramanian, K. Anbarasu et al., Cardiovascular diseases prediction by machine learning incorporation with deep learning. Front. Med. 10, 1150933 (2023)

    Article  Google Scholar 

  23. C.A. Vrancianu, A.M. Gheorghiu, D.E. Popa, J.S.K. Chan, D.I. Satti, Y.H.A. Lee, J.M.H. Hui, G. Tse, I. Ancuta, A. Ciobanu et al., Arrhythmias and conduction disturbances in patients with systemic sclerosis—a systematic literature review. Int. J. Mol. Sci. 23(21), 12963 (2022)

    Article  Google Scholar 

  24. WHO: Cardiovascular diseases (2023). https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1/. Online. Accessed 28-June-2023

  25. M.R. Williams, J.C. Perry, Arrhythmias and conduction disorders associated with atrial septal defects. J. Thorac. Dis. 10(Suppl 24) (2018). https://jtd.amegroups.com/article/view/23665

  26. L. Yang, H. Wu, X. **, P. Zheng, S. Hu, X. Xu, W. Yu, J. Yan, Study of cardiovascular disease prediction model based on random forest in Eastern China. Sci. Rep. 10(1), 5245 (2020)

    Article  Google Scholar 

  27. Y.-J. Son et al., Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc. Inform. Res. 16(4), 253–259 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinha, N., Joshi, A., Mohanty, S.P. (2024). iCardo 3.0: A Machine Learning Framework for Prediction of Conduction Disturbance in Heart. In: Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M. (eds) Data Science and Applications. ICDSA 2023. Lecture Notes in Networks and Systems, vol 821. Springer, Singapore. https://doi.org/10.1007/978-981-99-7814-4_28

Download citation

Publish with us

Policies and ethics

Navigation