Naturbasierte bioinformatische Ansätze in der Arzneimittelforschung gegen vielversprechende molekulare Ziele – Carbonanhydrasen und Serin/Threonin-Kinasen zur Krebsbehandlung

  • Chapter
  • First Online:
Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik

Zusammenfassung

Die Entdeckung neuer Arzneimittelkandidaten ist eine der herausragendsten Aufgaben in der biomedizinischen Forschung. In den letzten Jahrzehnten wurde die Allgegenwart von Computern und rechnergestützten Methoden im Arzneimittelentdeckungsprozess weit verbreitet eingesetzt. Fortschritte in der Informatik und der computergestützten Biologie haben die Produktivität im Bereich der Arzneimittelentdeckung im Gegensatz zu traditionellen Ansätzen erhöht. Traditionelle Ansätze zur Arzneimittelentdeckung basieren hauptsächlich auf In-vivo-Experimenten und In-vitro-Arzneimittel-Screening, diese Methoden sind jedoch in der Regel weniger produktiv. Bioinformatiktechniken werden verwendet, um das Verhalten von Arzneimittelkandidaten für therapeutische Aktivitäten im menschlichen Körper zu bestimmen, indem die Wechselwirkungen zwischen Arzneimitteln und Proteinen interpretiert, die Auswirkungen auf biologische Wege und Funktionen analysiert und die genomischen Varianten erläutert werden, die die Reaktion auf Arzneimittel in der Anfangsphase des Arzneimittelentdeckungsprozesses verändern können. Die computergestützte Arzneimittelentwurfsstrategie wird bevorzugt und breitflächig bei der Entwicklung von Inhibitoren gegen die signifikanten onkogenen Potenzialziele eingesetzt. Diese Strategie hat eine bedeutende Rolle bei der Entdeckung potenzieller präklinischer und klinischer Moleküle gegen tumorassoziierte Carboanhydrasen und Serin/Threonin-Kinasen zur Behandlung von Krebs gespielt. In diesem Kapitel haben wir die Rolle von bioinformatischen Ansätzen diskutiert, die umfangreich bei Screening und Entwicklung potenzieller Inhibitoren gegen Carboanhydrasen und Serin/Threonin-Kinase chemotherapeutischer Krebsziele eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Agarwal R, Singh A, Sen S (2016) Role of molecular docking in computer-aided drug design and development, S 1–28

    Google Scholar 

  • Aggarwal M, Boone CD, Kondeti B, McKenna R (2013) Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 28:267–277. https://doi.org/10.3109/14756366.2012.737323

  • Aimene Y, Eychenne R, Rodriguez F et al (2021) Synthesis, crystal structure, inhibitory activity and molecular docking of coumarins/sulfonamides containing triazolyl pyridine moiety as potent selective carbonic anhydrase IX and XII inhibitors. Curr Comput-Aided Drug Des 11:1076. https://doi.org/10.3390/cryst11091076

  • Alkhaldi AAM, Al-Sanea MM, Nocentini A et al (2020) 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: design, synthesis, biological and molecular modeling studies. Eur J Med Chem 207:112745. https://doi.org/10.1016/j.ejmech.2020.112745

  • Alterio V, Di Fiore A, D’Ambrosio K et al (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468. https://doi.org/10.1021/cr200176r

  • Argelaguet R, Velten B, Arnol D, et al (2018) Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets. Mol Syst Biol 14. https://doi.org/10.15252/msb.20178124

  • Arrouchi H, Lakhlili W, Ibrahimi A (2019) Re-positioning of known drugs for Pim-1 kinase target using molecular docking analysis. Bioinformation 15:116–120. https://doi.org/10.6026/97320630015116

  • Bakker OB, Aguirre-Gamboa R, Sanna S et al (2018) Integration of multi-omics data and deep phenoty** enables prediction of cytokine responses. Nat Immunol 19:776–786. https://doi.org/10.1038/s41590-018-0121-3

  • Bo Y-X, **ang R, Xu Y et al (2020) Synthesis, biological evaluation and molecular modeling study of 2-amino-3,5-disubstituted-pyrazines as Aurora kinases inhibitors. Bioorg Med Chem 28:115351. https://doi.org/10.1016/j.bmc.2020.115351

  • Chen Q, Chen Y-PP (2006) Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle. BMC Bioinform 7:394. https://doi.org/10.1186/1471-2105-7-394

  • Chen Q, Luo H, Zhang C, Chen Y-PP (2015) Bioinformatics in protein kinases regulatory network and drug discovery. Math Biosci 262:147–156. https://doi.org/10.1016/j.mbs.2015.01.010

  • Cohen P (2002) Protein kinases – the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315. https://doi.org/10.1038/nrd773

  • Cui JJ, Tran-Dubé M, Shen H et al (2011) Structure based drug design of Crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363. https://doi.org/10.1021/jm2007613

  • Cui JJ, McTigue M, Kania R, Edwards M (2013) Case history, S 421–434

    Google Scholar 

  • Cui W, Aouidate A, Wang S et al (2020) Discovering anti-cancer drugs via computational methods. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.00733

  • D’Ascenzio M, Secci D, Carradori S et al (2020) 1,3-Dipolar Cycloaddition, HPLC Enantioseparation, and docking studies of Saccharin/Isoxazole and Saccharin/Isoxazoline derivatives as selective carbonic anhydrase IX and XII inhibitors. J Med Chem 63:2470–2488. https://doi.org/10.1021/acs.jmedchem.9b01434

  • Du D, Chang C-H, Wang Y et al (2019) Response envelope analysis for quantitative evaluation of drug combinations. Bioinformatics 35:3761–3770. https://doi.org/10.1093/bioinformatics/btz091

  • Duong‐Ly KC, Peterson JR (2013) The human kinome and kinase inhibition. Curr Protoc Pharmacol 60. https://doi.org/10.1002/0471141755.ph0209s60

  • Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71. https://doi.org/10.1186/1741-7007-9-71

  • Eldeeb AH, Abo-Ashour MF, Angeli A et al (2021) Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 221:113486. https://doi.org/10.1016/j.ejmech.2021.113486

  • Eldehna WM, Al-Rashood ST, Al-Warhi T et al (2021) Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 36:271–286. https://doi.org/10.1080/14756366.2020.1862101

  • Felip E, Barlesi F, Besse B et al (2018) Phase 2 study of the HSP-90 inhibitor AUY922 in previously treated and molecularly defined patients with advanced non-small cell lung cancer. J Thorac Oncol 13:576–584. https://doi.org/10.1016/j.jtho.2017.11.131

  • Gagic Z, Ruzic D, Djokovic N et al (2020) In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem 7. https://doi.org/10.3389/fchem.2019.00873

  • Gillet VJ (2004) Designing combinatorial libraries optimized on multiple objectives, S 335–354

    Google Scholar 

  • Hassan Baig M, Ahmad K, Roy S et al (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22:572–581. https://doi.org/10.2174/1381612822666151125000550

  • Hiss JA, Hartenfeller M, Schneider G (2010) Concepts and applications of natural computing techniques in de novo drug and peptide design. Curr Pharm Des 16:1656–1665. https://doi.org/10.2174/138161210791164009

  • Huang G, Li J, Wang P, Li W (2018) A review of computational drug repositioning approaches. Comb Chem High Throughput Screen 20:831–838. https://doi.org/10.2174/1386207321666171221112835

  • Hutter M (2009) In Silico prediction of drug properties. Curr Med Chem 16:189–202. https://doi.org/10.2174/092986709787002736

  • Kania RS (2009) Structure-based design and characterization of axitinib. In: Kinase inhibitor drugs. John Wiley & Sons, Inc., Hoboken, NJ, USA, S 167–201

    Google Scholar 

  • Khalifa ME (2021) Design, synthesis and molecular docking study of new purine derivatives as Aurora kinase inhibitors. J Mol Struct 1229:129843. https://doi.org/10.1016/j.molstruc.2020.129843

  • Khushal A, Mumtaz A, Shadoul WA et al (2022) Synthesis, carbonic anhydrase II/IX/XII inhibition, DFT, and molecular docking studies of hydrazide-sulfonamide hybrids of 4-methylsalicyl- and acyl-substituted hydrazide. Biomed Res Int 2022:1–16. https://doi.org/10.1155/2022/5293349

  • Kumar S, Rulhania S, Jaswal S, Monga V (2021) Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem 209:112923. https://doi.org/10.1016/j.ejmech.2020.112923

  • Mboge MY, Chen Z, Wolff A et al (2018) Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition. PLoS ONE 13:e0207417. https://doi.org/10.1371/journal.pone.0207417

  • McDonald PC, Chia S, Bedard PL et al (2020) A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol 43:484–490. https://doi.org/10.1097/COC.0000000000000691

  • Meadows KL, Hurwitz HI (2012) Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med 2:a006577–a006577. https://doi.org/10.1101/cshperspect.a006577

  • Milite C, Amendola G, Nocentini A et al (2019) Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J Enzyme Inhib Med Chem 34:1697–1710. https://doi.org/10.1080/14756366.2019.1666836

  • Parate S, Kumar V, Lee G et al (2021) Marine-derived natural products as ATP-competitive mTOR kinase inhibitors for cancer therapeutics. Pharmaceuticals 14:282. https://doi.org/10.3390/ph14030282

  • Peerzada MN, Khan P, Ahmad K et al (2018) Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem 155. https://doi.org/10.1016/j.ejmech.2018.05.034

  • Peerzada MN, Khan P, Khan NS et al (2020a) Identification of morpholine based hydroxylamine analogues: selective inhibitors of MARK4/Par-1d causing cancer cell death through apoptosis. New J Chem 44. https://doi.org/10.1039/d0nj03474f

  • Peerzada MN, Khan P, Khan NS et al (2020b) Design and development of small-molecule Arylaldoxime/5-Nitroimidazole hybrids as potent inhibitors of MARK4: a promising approach for target-based cancer therapy. ACS Omega 5:22759–22771. https://doi.org/10.1021/acsomega.0c01703

  • Philoppes JN, Khedr MA, Hassan MHA et al (2020) New pyrazolopyrimidine derivatives with anticancer activity: design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics. Bioorg Chem 100:103944. https://doi.org/10.1016/j.bioorg.2020.103944

  • Pinard MA, Mahon B, McKenna R (2015) Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors. Biomed Res Int 2015:1–15. https://doi.org/10.1155/2015/453543

  • Piotrowska Z, Costa DB, Oxnard GR et al (2018) Activity of the Hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions. Ann Oncol 29:2092–2097. https://doi.org/10.1093/annonc/mdy336

  • Schüller A, Schneider G (2008) Identification of hits and lead structure candidates with limited resources by adaptive optimization. J Chem Inf Model 48:1473–1491. https://doi.org/10.1021/ci8001205

  • Schwefel H-P (2002) Deep insight from simple models of evolution. Biosystems 64:189–198. https://doi.org/10.1016/S0303-2647(01)00186-1

  • Sharif Siam MK, Sarker A, Sayeem MMS (2021) In silico drug design and molecular docking studies targeting Akt1 (RAC-alpha serine/threonine-protein kinase) and Akt2 (RAC-beta serine/threonine-protein kinase) proteins and investigation of CYP (cytochrome P450) inhibitors against MAOB (monoamine oxida. J Biomol Struct Dyn 39:6467–6479. https://doi.org/10.1080/07391102.2020.1802335

  • Sheng Z, Sun Y, Yin Z et al (2017) Advances in computational approaches in identifying synergistic drug combinations. Brief Bioinform. https://doi.org/10.1093/bib/bbx047

  • Sun J, Lv X-H, Qiu H-Y et al (2013) Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Eur J Med Chem 68:1–9. https://doi.org/10.1016/j.ejmech.2013.07.003

  • Swamy PMG, Abbas N, Dhiwar PS et al (2021) Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J Biomol Struct Dyn 1–22. https://doi.org/10.1080/07391102.2021.2004236

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

  • Usha T, Shanmugarajan D, Goyal AK et al (2018) Recent updates on computer-aided drug discovery: time for a paradigm shift. Curr Top Med Chem 17:3296–3307. https://doi.org/10.2174/1568026618666180101163651

  • Xu C, Liu Y, Zhao G (2022) The Development of 3-substituted Indolin-2-one Derivatives as Kinase Inhibitors for Cancer Therapy. Curr Med Chem 29:1891–1919. https://doi.org/10.2174/0929867328666210831142311

  • Yamali C, Sakagami H, Uesawa Y et al (2021) Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 217:113351. https://doi.org/10.1016/j.ejmech.2021.113351

  • Zhong S, Hou Y, Zhang Z et al (2022) Identification of novel natural inhibitors targeting AKT Serine/Threonine Kinase 1 (AKT1) by computational study. Bioengineered 13:12003–12020. https://doi.org/10.1080/21655979.2021.2011631

Download references

Danksagung

M. N. Peerzada ist dankbar für ein Postdoktoranden-Stipendium (Nr. 3/1/3PDF(24)/2021-HRD-6) des Indian Council of Medical Research (ICMR) New Delhi, Department of Health Research, Regierung von Indien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peerzada, M.N., Rizvi, M.A., Ajeeshkumar, K.K., Sahu, A., Verma, S. (2024). Naturbasierte bioinformatische Ansätze in der Arzneimittelforschung gegen vielversprechende molekulare Ziele – Carbonanhydrasen und Serin/Threonin-Kinasen zur Krebsbehandlung. In: Raza, K. (eds) Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik. Springer, Singapore. https://doi.org/10.1007/978-981-99-7808-3_16

Download citation

Publish with us

Policies and ethics

Navigation