P53, ROS: Redox Regulation Signaling, Metabolic Reprogramming, and Autophagy in Cancer

  • Chapter
  • First Online:
Redox Regulation and Therapeutic Approaches in Cancer
  • 94 Accesses

Abstract

This chapter entitled “P53, ROS-Redox Regulation Signaling, Metabolic Reprogramming, and Autophagy in Cancer” initially shows P53 regulation with MDM2, and its tumor suppressor role has been discussed through its activation/deactivation and apoptosis. Cellular redox homeostasis through the p53 antioxidant and prooxidant function has been discussed. As most cancers have mutant p53, its redox regulation functional changes have been discussed as gain of function (GOF) and loss of function (LOF) linking to cancer therapy. Further, p53 regulation of reprogramming of metabolism in cancer has been discussed both in wild type and mutant p53. p53-mediated, autophagy signaling pathways and regulation in cancer have also been taken up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 166.39
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2018) The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 25:27–36

    Article  CAS  PubMed  Google Scholar 

  • Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC (1998) Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci U S A 95:8823–8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrysik Z, Galbraith M, Guarnieri AL, Zaccara S, Sullivan KD et al (2017) Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res 27:1645–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher G, Lotem J, Kama R, Sachs L, Shaul Y (2002) NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci U S A 99:3099–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher G, Lotem J, Tsvetkov P, Reiss V, Sachs L, Shaul Y (2003) P53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H: quinone oxidoreductase 1. Proc Natl Acad Sci U S A 100:15065–15070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, Brown-Endres L, Tsuchihara K, Mak TW, Benchimol S (2011) ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 44:491–501

    Article  CAS  PubMed  Google Scholar 

  • Bae SH, Sung SH, Oh SY, Lim JM, Lee SK et al (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17:73–84

    Article  CAS  PubMed  Google Scholar 

  • Balaburski GM, Hontz RD, Murphy ME (2010) p53 and ARF: unexpected players in autophagy. Trends Cell Biol 20:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 25:154–160

    Article  CAS  PubMed  Google Scholar 

  • Belinsky M, Jaiswal AK (1993) NAD(P)H: quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 12:103–117

    Article  CAS  PubMed  Google Scholar 

  • Belkahla S, Khan AUH, Gitenay D, Alexia C, Gondeau C, Vo DN, Orecchioni S, Talarico G, Bertolini F, Cartron G et al (2018) Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget 9:1114–1129

    Article  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28:3015–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH (2013) Metabolic regulation by p53 family members. Cell Metab 18:617–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau HE, Casterline BW, Burke DJ, Leto TL (2014) Wild-type and mutant P53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer 110:2569–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Orntoft TF, Andersen CL, Dobbelstein M (2008) p53-responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68:10094–10104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks CL, Li M, Gu W (2007) Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation. J Biol Chem 282:22804–22815

    Article  CAS  PubMed  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  CAS  PubMed  Google Scholar 

  • Broz DK, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A, Attardi LD (2013) Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 27:1016–1031

    Article  CAS  Google Scholar 

  • Brynczka C, Labhart P, Merrick BA (2007) NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 8:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Budanov AV (2011) Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15:1679–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV (2014) The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem 85:337–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Lambert JM, Hainaut P, Wiman KG (2009) Mutant p53 rescue and modulation of p53 redox state. Cell Cycle 8:2509–2517

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Eriksson SE, Bianchi J, Wiman KG (2018) Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18:89–102

    Article  CAS  PubMed  Google Scholar 

  • Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pebusque MJ et al (2009) Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 69:219–226

    Article  CAS  PubMed  Google Scholar 

  • Chen J (2016) The cell-cycle arrest and apoptotic functions of P53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6:a026104. 15 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Sun Z, Wang XJ, Jiang T, Huang Z et al (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Park SM, Tumanov AV, Hau A, Sawada K et al (2010) CD95 promotes tumour growth. Nature 465:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung EC, Ludwig RL, Vousden KH (2012) Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 109:20491–20496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. New England J Med 368:1845–1846

    Article  CAS  Google Scholar 

  • Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA et al (2010) Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A 107:15051–15056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contractor T, Harris CR (2012) p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72:560–567

    Article  CAS  PubMed  Google Scholar 

  • Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ et al (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R, Oppici E, Cavallini C, Gasperini S, Tamassia N et al (2018) Mutant P53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O2−·production in cancer cells. Br J Cancer 119:994–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crighton D, Ryan KM (2004) Splicing DNA-damage responses to tumour cell death. Biochim Biophys Acta 1705:3–15

    CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM. A p53-induced modulator of autophagy is critical for apoptosis. Cell 126:121–134

    Article  CAS  PubMed  Google Scholar 

  • Crighton D, O’Prey J, Bell HS, Ryan KM (2007a) p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ 14:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, Ryan KM (2007b) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74

    Article  CAS  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19:1438–1449

    Article  PubMed  PubMed Central  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK et al (1993) Gain of function mutations in p53. Nat Genet 4:42–46

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  CAS  PubMed  Google Scholar 

  • Duffy MJ, Synnott NC, O’Grady S, Crown J (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67

    Article  CAS  PubMed  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson SE, Ceder S, Bykov VJN, Wiman KG (2019) p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 11:330–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2:a001057

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang H, Levine AJ, ** S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102:8204–8209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Hu W, de Stanchina E, Teresky AK, ** S, Lowe S et al (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67:3043–3053

    Article  CAS  PubMed  Google Scholar 

  • Fesler A, Zhang N, Ju J (2016) The expanding regulatory universe of p53 in gastrointestinal cancer. F1000Res 5:756. 13 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 36:3943–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flatt PM, Polyak K, Tang LJ, Scatena CD, Westfall MD et al (2000) p53-dependent expression of PIG3 during proliferation, genotoxic stress, and reversible growth arrest. Cancer Lett 156:63–72

    Article  CAS  PubMed  Google Scholar 

  • Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26:1268–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Shen Z, Shang L, Wang X (2011) Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage–induced cell death. Cell Death Differ 18:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2016) Glutaminolysis and transferring regulate ferroptosis. Mol Cell 59:298–308

    Article  Google Scholar 

  • Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20

    Article  CAS  PubMed  Google Scholar 

  • Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP (2018) The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol 9:124. 9 pages

    Article  Google Scholar 

  • Goiran T, Duplan E, Rouland L, elManaa W, Lauritzen I, Dunys J, You H, Checler F, da Costa CA (2018) Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ 25:873–884

    PubMed  PubMed Central  Google Scholar 

  • Gomes AS, Ramos H, Soares J, Saraiva L (2018) p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res 131:75–86

    Article  CAS  PubMed  Google Scholar 

  • Gonchar GA, Mankovska IN (2017) Time-dependent effect of severe hypoxia/reoxygenation on oxidative stress level, antioxidant capacity and p53 accumulation in mitochondria of rat heart. Biochem J 89:39–47

    CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LVF, Karakaidos P, Zacharatos P, Kotsinas A et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  CAS  PubMed  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A (2006) DAPK protein family and cancer. Autophagy 2:74–79

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126:30–32

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H et al (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2:ra82. 20 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM et al (2013a) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, **a B, White E (2013b) Autophagy-mediated tumor promotion. Cell 155:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P et al (2008) DAPK-1 binding to a linear peptide motif in MAP 1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumor suppression. Nat Rev Cancer 12:613–626

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  CAS  PubMed  Google Scholar 

  • Horn HF, Vousden KH (2007) Co** with stress: multiple ways to activate p53. Oncogene 26:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107:7455–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B et al (2021) Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 14:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S et al (2004) P53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Iacobuzio-Donahue CA, Herman JM (2014) Autophagy, p53 and pancreatic cancer. N Engl J Med 370:1352–1353

    Article  CAS  PubMed  Google Scholar 

  • Itahana Y, Itahana K (2018) Emerging roles of p53 family members in glucose metabolism. Int J Mol Sci 19:776. 22 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Italiano D, Lena AM, Melino G, Candi E (2012) Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11:4589–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang JL et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328

    Google Scholar 

  • Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JJ et al (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493:689–693

    Google Scholar 

  • ** SM, Youle RJ (2012) PINK1- and parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Kim MJ, Kim DO, Kim WS, Yoon SJ et al (2013) TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab 18:75–85

    Article  CAS  PubMed  Google Scholar 

  • Kallin A, Johannessen LE, Cani PD, Marbehant CY, Essaghir A et al (2007) SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 gamma. J Lipid Res 48:1628–1636

    Article  CAS  PubMed  Google Scholar 

  • Kalo E, Kogan-Sakin I, Solomon H, Bar-Nathan E, Hay M et al (2012) Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species. J Cell Sci 125:5578–5586

    CAS  PubMed  Google Scholar 

  • Kandoth C, Mclellan MD, Vandin F, Niu S, **e M et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MY, Kim HB, Piao C, Lee KH, Hyun JW, Chang IY, You HJ (2013) The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ 20:117–129

    Article  CAS  PubMed  Google Scholar 

  • Karni-Schmidt O, Lokshin M, Prives C (2016) The roles of MDM2 and MDMX in cancer. Annu Rev Pathol 11:617–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170:1062–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25:37–45

    Article  CAS  PubMed  Google Scholar 

  • Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kim MP, Lozano G (2018) Mutant p53 partners in crime. Cell Death Differ 25:161–168

    Article  CAS  PubMed  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  CAS  PubMed  Google Scholar 

  • Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R et al (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65. Open Biol 2:120080

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A et al (2018) A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell 71:178–190

    Article  CAS  PubMed  Google Scholar 

  • Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS, Young KH, Li Y (2011) Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30:843–853

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E et al (2009) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228

    Article  Google Scholar 

  • Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Bandyopadhyay G, Li N, Aghajan M, Jang I et al (2012) Maintenance of metabolic homeostasis by sestrin2 and sestrin3. Cell Metab 16:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee P, Vousden KH, Cheung EC (2014) TIGAR, TIGAR, burning bright. Cancer Metab 2:1. 9 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (2019) Targeting therapies for the p53 protein in cancer treatments. Ann Rev Cancer Biol 3:21–34

    Article  Google Scholar 

  • Levine AJ (2022) Targeting the P53 protein for cancer therapies: the translational impact of p53 research. Cancer Res 82:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Feng Z, Mak TW, You H, ** S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606

    Article  CAS  PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Li M, Sun M, Cao L, Gu JH, Ge J et al (2014) A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J Neurosci 34:7458–7471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3:9. 10 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Linehan WM, Rouault TA (2013) Molecular pathways: fumarate hydratase-deficient kidney cancer—targeting the Warburg effect in cancer. Clin Cancer Res 19:3345–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisek K, Campaner E, Ciani Y, Walerych D, Sal GD (2018) Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 9:20508–20523

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Chen X (2002) The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene 21:7195–7204

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Chen Y, St Clair DK (2008) ROS and p53: versatile partnership. Free Radic Biol Med 44:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang C, Hu W, Feng Z (2015) Tumor suppressor P53 and its mutants in cancer metabolism. Cancer Lett 356:197–203

    Article  CAS  PubMed  Google Scholar 

  • Liu DS, Duong CP, Haupt S, Montgomery KG, House CM et al (2017) Inhibiting the system xc/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8:14844. 14 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorin S, Borges A, Ribeiro Dos Santos L, Souquere S, Pierron G, Ryan KM et al (2009) C-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells. Cancer Res 69:6924–6931

    Article  CAS  PubMed  Google Scholar 

  • Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M (2010) Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 6:153–154

    Article  PubMed  Google Scholar 

  • Lorin S, Hamai A, Mehrpour M, Codogno P (2013) Autophagy regulation and its role in cancer. Semin Cancer Biol 23:361–379

    Article  CAS  PubMed  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  CAS  PubMed  Google Scholar 

  • Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA (2011) Regulation of glucose metabolism by P53: emerging new roles for the tumor suppressor. Oncotarget 2:948–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Madan E, Gogna R, Kuppusamy P, Bhatt M, Mahdi AA, Pati U (2013) SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex. Mol Cell Biol 33:1285–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–546

    Article  CAS  PubMed  Google Scholar 

  • Maillet A, Pervaiz S (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 16:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA et al (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3:374–376

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL et al (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8:1571–1576

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185

    Article  CAS  PubMed  Google Scholar 

  • Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine JC (2005) Dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  • Melnik BC (2017) p53: key conductor of all anti-acne therapies. J Transl Med 15:195. 12 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalak EM, Vandenberg CJ, Delbridge AR, Wu L, Scott CL et al (2010) Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev 24:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milicevic Z, Kasapovic J, Gavrilovic L, Milovanovic Z, Bajic V, Spremo-Potparevic B (2014) Mutant p53 protein expression and antioxidant status deficiency in breast cancer. EXCLI J 13:691–708

    PubMed  PubMed Central  Google Scholar 

  • Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A et al (2008) Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7:3056–3061

    Article  CAS  PubMed  Google Scholar 

  • Morselli S, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L, Criollo A, Michaud M, Maiuri MC, Chano T et al (2011) p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10:2763–2769

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2013) p53 mutations in cancer. Nature Cell Biol 15:2–8

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25:304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K et al (1998) P53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N’Guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE, Seux M, Stocker P, Culcasi M, Iovanna JL et al (2011) Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis. Antioxid Redox Signal 15:1639–1653

    Article  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrakhovitch EA, Cherian MG (2005) Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10:111–121

    Article  CAS  PubMed  Google Scholar 

  • Otero-Albiol D, Felipe-Abrio B (2016) MicroRNA regulating metabolic reprogramming in tumor cells: new tumor markers. Cancer Transl Med 2:175–181

    Article  Google Scholar 

  • Park HJ, Carr JR, Wang Z, Nogueira V, Hay N et al (2009a) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28:2908–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KJ, Lee SH, Lee CH, Jang JY, Chung J, Kwon MH et al (2009b) Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382:726–729

    Article  CAS  PubMed  Google Scholar 

  • Parrales A, Iwakuma T (2016) p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci 17:1–17

    Article  Google Scholar 

  • Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P (2009) Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284:2719–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinnix ZK, Miller LD, Wang W, D’Agostino R Jr, Kute T et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2:43ra56. 20 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Polyak K, **a Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  CAS  PubMed  Google Scholar 

  • Pugacheva EN, Ivanov AV, Kravchenko JE, Kopnin BP, Levine AJ, Chumakov PM (2002) A model for p53-induced apoptosis. Nature 389:300–305

    Google Scholar 

  • Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5:3056

    Article  PubMed  Google Scholar 

  • Rhee SG, Bae SH (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of keal1 and Nrf2 activation of mTORC1. Free Radic Biol Med 88:205–211

    Article  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  • Rivera A, Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280:29346–29354

    Article  CAS  PubMed  Google Scholar 

  • Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA (2008) A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol 28:5951–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeldt MT, Ryan KM (2009) The role of autophagy in tumor development and cancer therapy. Expert Rev Mol Med 11:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A et al (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504:296–300

    Article  CAS  PubMed  Google Scholar 

  • Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G et al (2012) TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev 26:2009–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadi H, Seillier M, Carrier A (2015) The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 118:44–50

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy K, Lane DP (2018) Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 15:13–30

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, IIyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6:221ra15. 30 pages

    Article  PubMed  Google Scholar 

  • Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A 107:18511–18516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seemann S, Hainaut P (2005) Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of Basel p53 stability and activity. Oncogene 24:3853–3863

    Article  CAS  PubMed  Google Scholar 

  • Selivanova G (2004) p53: fighting cancer. Curr Cancer Drug Targets 4:385–402

    Article  CAS  PubMed  Google Scholar 

  • Selivanova G, Wiman KG (2007) Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 26:2243–2254

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YR, Kelley MR, Smith ML (2002) Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A 99:14548–14553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737

    Article  CAS  PubMed  Google Scholar 

  • Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S et al (2012) PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy. Sci Rep 2:1002. 8 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H et al (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17:2233–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  • Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE (2018) p53 and metabolism: from mechanism to therapeutics. Oncotarget 9:23780–23823

    Article  PubMed  PubMed Central  Google Scholar 

  • Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Wiman KG (2015) TP53: an oncogene in disguise. Cell Death Differ 22:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiewe T, Haran TE (2018) How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 38:27–43

    Article  PubMed  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbaramaiah K, Michaluart P, Chung WJ, Tanabe T, Telang N, Dannenberg AJ (1999) Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Ann N Y Acad Sci 889:214–223

    Article  CAS  PubMed  Google Scholar 

  • Sugars KL, Budhram-Mahadeo V, Packham G, Latchman DS (2001) A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res 29:4530–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh YA, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG, El-Naggar AK, Van Pelt C, Terzian T, Lozano G (2011) Multiple stress signals activate mutant P53 in vivo. Cancer Res 71:7168–7175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh HW, Yun S, Song H, Jung H, Park YJ et al (2013) TXNIP interacts with hEcd to increase p53 stability and activity. Biochem Biophys Res Commun 438:264–269

    Article  CAS  PubMed  Google Scholar 

  • Sui X, ** L, Huang X, Geng S, He C, Hu X (2011) p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy 7:565–571

    Article  CAS  PubMed  Google Scholar 

  • Surget S, Khoury MP, Bourdon JC (2013) Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 7:57–68

    PubMed  PubMed Central  Google Scholar 

  • Suzuki HI, Miyazono K (2013) p53 actions on microRNA expression and maturation pathway. Methods Mol Biol 962:165–181

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107:7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274:12061–12066

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Zhao M, Tang L, Patel AA, ** Q et al (2018) Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene 37:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Di J, Cao H, Bai J, Zheng J (2015) p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett 363:101–107

    Article  CAS  PubMed  Google Scholar 

  • Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J et al (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D’Amelio M, Djavaheri-Mergny M et al (2008a) A dual role of p53 in the control of autophagy. Autophagy 4:810–814

    Article  CAS  PubMed  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F et al (2008b) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW et al (2006) A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9:273–285

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tran TQ, Lowman XH, Reid MA, Mendez-Dorantes C, Pan M et al (2017) Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene 36:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Trauth BC, Klas C, Peters AM, Matzku S, Moller P et al (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K et al (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274:35809–35815

    Article  CAS  PubMed  Google Scholar 

  • Valente L, Gray DHD, Michalak EM, Pinon-Hofbauer J, Egle A et al (2013) p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 3:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320

    Article  CAS  PubMed  Google Scholar 

  • Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C et al (2014) Glioma tumor grade correlates with Parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 33:1764–1775

    Article  CAS  PubMed  Google Scholar 

  • Voorhoeve PM, Le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Loojenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nature Rev Mol Cell Biol 8:275–283

    Article  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y et al (2016) Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol 18:897–909

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Yin C, Li XX, Yang XZ, Yang Y et al (2016) Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner. Aging 8:1184–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-diated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nature Rev Cancer 12:401–410

    Article  CAS  Google Scholar 

  • Won KY, Lim SJ, Kim GY, Kim YW, Han SA, Song JY et al (2012) Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol 43:221–228

    Article  CAS  PubMed  Google Scholar 

  • Woo MG, Xue K, Liu J, McBride H, Tsang BK (2012) Calpain-mediated processing of p53-associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking. J Biol Chem 287:3963–3975

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Ye H, Tang Z, Shao C, Lu G et al (2017) p53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell Death Dis 8:e3130

    Article  CAS  PubMed  Google Scholar 

  • **ao X, Huang X, Ye F, Chen B, Song C, Wen J, Zhang Z, Zheng G, Tang H, **e X (2016) The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep 6:21735. 9 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y et al (2003) p53 activation in adipocytes of obese mice. J Biol Chem 278:25395–25400

    Article  CAS  PubMed  Google Scholar 

  • Yan HI, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347

    Article  CAS  PubMed  Google Scholar 

  • Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514. 9 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci U S A 103:9051–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    Article  CAS  PubMed  Google Scholar 

  • Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009a) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5:720–722

    Article  CAS  PubMed  Google Scholar 

  • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M et al (2009b) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC et al (2009) p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy 5:339–350

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M et al (2010) Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 9:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Lin M, Wu R, Wang X, Yang B, Levine A et al (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108:16259–16264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF (2013) Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal 25:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Xu M, Mo YY (2014a) Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol 6:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DG, Zheng JN, Pei DS (2014b) P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer 13:115. 7 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qian Y, Zhang J, Yan W, Jung YS et al (2017) Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 31:1243–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Wang J, Zhao M, **e TX, Tanaka N, Sano D et al (2014) Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 54:960–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Hao Q, Lu H (2019) Mutant p53 in cancer therapy – the barrier or the path. J Mol Cell Biol 11:293–305

    Article  CAS  PubMed  Google Scholar 

  • Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M.P. (2023). P53, ROS: Redox Regulation Signaling, Metabolic Reprogramming, and Autophagy in Cancer. In: Redox Regulation and Therapeutic Approaches in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-7342-2_7

Download citation

Publish with us

Policies and ethics

Navigation