Immune System, Redox Signaling, and Cancer Immunity

  • Chapter
  • First Online:
Redox Regulation and Therapeutic Approaches in Cancer
  • 80 Accesses

Abstract

This chapter entitled “Immune System, Redox Signaling, and Cancer Immunity” starts with the characteristics of various immune systems (innate and adaptive) and immune cells, and their association with cancer cells. Dysfunction of the role of immune systems in diseases has been discussed. The role of ROS and redox regulation in immune system activity through the activation and deactivation of various immune cells has been taken up extensively.

Furthermore, the link between immunity and anticancer strategies has been discussed. Various experimental models to exhibit the interaction of immune cells and also TME cells in various tumor models have been discussed, which provide information on the activation or suppression of immune cells which further may be useful in translating into immunotherapy. In simple terms, cancer cell genomic instability provides neo-antigen, which suppresses the T cell function through the generation of inhibitory molecules such as popular CTLA-4 and PD-1, which were exploited for cancer therapy. The role of TME cells in immune responses to cancer cells has also been taken up. Also, immune metabolism (interplay between immunologic and metabolic processes) where immune system mediates cancer initiation and development has been discussed. Cell intrinsic metabolism directly controls the effector function and cellular fate. Interestingly, suppressed immune activity in an increased ROS situation in the TME was addressed by using nanomaterials to suppress ROS levels and, in turn, enhance immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal B (2019) New therapeutic targets for cancer: the interplay between immune and metabolic checkpoints and gut microbiota. Clin Trans Med 8:23. 13 pages

    Article  Google Scholar 

  • Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G et al (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A 99:1491–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonio N, Bonnelykke ML, Ward LC, Collin J, Christensen IJ et al (2015) The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J 34:2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aras S, Zaidi MR (2017) Tameless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurelius J, Thoren FB, Akhiani AA, Brune M, Palmqvist L et al (2012) Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood 119:5832–5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurelius J, Hallner A, Werlenius O, Riise R, Mollgard L et al (2017) NOX2-dependent immunosuppression in chronic myelomonocytic leukemia. J Leukoc Biol 102:459–466

    Article  CAS  PubMed  Google Scholar 

  • Aydin E, Johansson J, Nazir FH, Hellstrand K, Martner A (2017) Role of nox2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol Res 5:804–811

    Article  CAS  PubMed  Google Scholar 

  • Bai A, Moss A, Rothweiler S, Serena Longhi M, Wu Y, Junger WG et al (2015) NADH oxidase-dependent cd39 expression by cd8(+) e cells modulates interferon gamma responses via generation of adenosine. Nat Commun 6:8819. 12 pages

    Article  CAS  PubMed  Google Scholar 

  • Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1:314–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Baras AS, Drake C, Liu JJ, Gandhi N, Kates M et al (2016) The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology 5:e1134412

    Article  PubMed Central  Google Scholar 

  • Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I et al (2009) IL-1 acts directly on cd4 t cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A 106:7119–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–449

    Article  CAS  PubMed  Google Scholar 

  • Boveris A (1977) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82

    Article  CAS  PubMed  Google Scholar 

  • Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–671

    Article  CAS  PubMed  Google Scholar 

  • Brodsky M, Halpert G, Albeck M, Sredni B (2010) The anti-inflammatory effects of the tellurium redox modulating compound, AS101, are associated with regulation of NFkappaB signaling pathway and nitric oxide induction in macrophages. J Inflamm 7:3. 8 pages

    Article  Google Scholar 

  • Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD et al (2006) Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 108:88–96

    Article  CAS  PubMed  Google Scholar 

  • Calcinotto A, Filipazzi P, Grioni G, Iero M, De Milito A et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Article  CAS  PubMed  Google Scholar 

  • Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A (2008) The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 38:2419–2425

    Article  CAS  Google Scholar 

  • Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HF Jr (2010) Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas. Cancer Immunol Immunother 59:465–472

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Villagrana RD, Albores-Garcia D, Cervantes-Villagrana AR, Garcia-Acevez SJ (2020) Tumor-induced neurogenesis and immune evasion as targets of innovative anticancer therapies. Signal Transduct Target Ther 5:99. 23 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S et al (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 114:E761–E770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Galan L, Angel MCAD, Zenteno E, Chavez R, Lascuram R (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Song M, Zhang B, Zhang Y (2016) Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longav 2016:1580967, 10 pages

    Google Scholar 

  • Chen ZH, Qiu M, Wu X, Wu Q, Lu J et al (2018) Elevated baseline serum lactate dehydrogenase indicates a poor prognosis in primary duodenum adenocarcinoma patients. J Cancer 9:512–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen MS, Ryan JL, Root RK (1981) The oxidative metabolism of thioglycollate-elicited mouse peritoneal macrophages: the relationship between oxygen, superoxide and hydrogen peroxide and the effect of monolayer formation. J Immunol 127:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comito G, Giannoni CP, Segura CP, Barcellos-de-Souza P, Raspollini MR et al (2014) Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33:2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Corzo CA, Cotter MJ, Cheng PY, Cheng FD, Kusmartsev S, Sotomayor E et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2003) Inflammation and cancer. Nature 420:860–867

    Article  Google Scholar 

  • Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Fang P, Saredy J, ** H, Ramon C, Yang W et al (2017) Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated cd40(+) monocyte differentiation. J Hematol Oncol 10:141. 18 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  CAS  PubMed  Google Scholar 

  • Dandekar RC, Kingaonkar AV, Dhabekar GS (2011) Role of macrophages in malignancy. Ann Maxillofac Surg 1:150–154

    Article  PubMed  PubMed Central  Google Scholar 

  • DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y et al (2020) Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat Commun 11:4951. 12 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  • Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of cd40/ed401 engagement in the immune system. Immunol Rev 229:152–172

    Article  CAS  PubMed  Google Scholar 

  • El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kundo M, Hsu C et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): an open-label, non-comparative, phase ½ dose escalation and expansion trial. Lancet 389:2492–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16:447–462

    Article  CAS  PubMed  Google Scholar 

  • Enukidze M, Machavariani MG, Intskirveli NA, Bezhitashvili ND, Sanikidze TV et al (2009) Cell death in Jurkat cells induced by oxygen/nitrogen stress. Georgian Med News 167:109–113

    Google Scholar 

  • Evans MK, Sauer SJ, Nath S, Robinson TJ, Morse MA, Devi GR (2016) X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis 7:e2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallarino F, Grohmann U, Puccetti P (2012) Indoleamine 2,3-dioxygenase: from catalyst to signaling function. Eur J Immunol 42:1932–1937

    Article  CAS  PubMed  Google Scholar 

  • Fan MY, Turka LA (2018) Immunometabolism and PI(3)K signaling as a link between IL-2, Foxp3 expression, and suppressor function in regulatory T cells. Front Immunol 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang PU, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H (2018) Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 11:97. 22 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng M, Chen JY, Weissman-Tsukamoto R, Volkmer JP et al (2015) Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A 112:2145–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Lu S, Ding Y, Zheng M, Wang X (2016) Homocysteine activates t cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell 7:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M (2018) Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal 16:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22:1115–1126

    Article  PubMed  Google Scholar 

  • Flower DR, Doytchinova IA (2002) Immunoformatics and the prediction of immunogenicity. Appl Bioinforma 1:167–176

    CAS  Google Scholar 

  • Franchina DG, Dostert C, Brenner D (2018) Reactive oxygen species: involvement in t cell signaling and metabolism. Trends Immunol 39:489–502

    Article  CAS  PubMed  Google Scholar 

  • Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL et al (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289:7884–7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridlender ZG, Sun J, Kim S, Kapoor VK, Cheng G et al (2013) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  Google Scholar 

  • Frossi B, De Carli M, Piemonte M, Pucillo C (2008) Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by th1 and th2 cells. Mol Immunol 45:58–64

    Article  CAS  PubMed  Google Scholar 

  • Frumento G, Piazza T, Di Carlo E, Ferrini S (2006) Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 6:233–237

    Article  PubMed  Google Scholar 

  • Fuchs D, Baier-Bitterlich G, Wede I, Wachter H (1997) Reactive oxygen and apoptosis. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Habor Laboratory Press, Cold Spring Habor, New York, pp 139–167

    Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S (2013) Tumor associated macrophages and neutrophils in cancer. Immuno Biol 218:1402–1410

    Article  CAS  Google Scholar 

  • Gelloni M, Zanetti M (2005) CD4 T cells in tumor immunity. Springer Semin Immunopathol 27:37–48

    Article  Google Scholar 

  • Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerner MY, Heltemes-Harris LM, Fife BT, Mescer MF (1950) Cutting edge: i1-12 and type I ifn differentially program cd8 t cells for programmed death 1 re-expression levels and tumor control. J Immunol 191:1011–1015

    Article  Google Scholar 

  • Ghosh S, Mukherjee S, Choudhury S, Gupta P, Adhikary A, Baral R et al (2015) Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: role of fluoxetine. Cell Signal 27:1398–1412

    Article  CAS  PubMed  Google Scholar 

  • Gostner JM, Becker K, Fuchs D, Sucher R (2013) Redox regulation of the immune response. Redox Rep 18:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulopoulou S, McCarthy CG, Webb RC (2016) Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev 68:142–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in t cells. Immunol Rev 193:70–81

    Article  CAS  PubMed  Google Scholar 

  • Griffiths HR, Gao D, Pararasa C (2017) Redox regulation in metabolic programming and inflammation. Redox Biol 12:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gropper Y, Feferman T, Shalit T, Salame TM, Porat Z, Shakhar G (2017) Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep 20:2547–2555

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Patino JA, Turk MJ, Wolchok JD, Houghton AN (2003) Immunity to cancer through immune recognition of altered self: studies with melanoma. Adv Cancer Res 90:157–177

    Article  CAS  PubMed  Google Scholar 

  • Gun SY, Lee SWL, Sieow JL, Wong SC (2019) Targeting immune cells for cancer therapy. Redox Biol 25:101174. 16 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI et al (2016) Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 6:270–285

    Article  CAS  PubMed  Google Scholar 

  • Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN et al (2008) HLA class I antigen processing machinery component expression and intra tumoral T-cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 14:3372–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hasan AA, Ghaemmaghami AM, Fairclough L, Robins A, Sewell HF, Shakib F (2009) Allergen-driven suppression of thiol production by human dendritic cells and the effect of thiols on T cell function. Immuno Biol 214:2–16

    Article  CAS  Google Scholar 

  • Hashimoto O, Yoshida M, Koma YI, Yanai T, Hasegawa D et al (2016) Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 240:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006) Innate immune recognition and suppression of tumors. (Adv P) cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Inves 125:3335–3337

    Google Scholar 

  • Hegedus C, Kovacs K, Polgar Z, Regdon Z, Szabo E, Robaszkiewicz A, Forman HJ, Martner A, Virag L (2018) Redox control of cancer cell destruction. Redox Biol 16:59–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hervera A, De Virgiliis F, Palmisaano I, Zhou L, Tantardini E et al (2018) Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 20:307–319

    Article  CAS  PubMed  Google Scholar 

  • Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann G, Schobersberger W, Frede S, Pelzer L, Fandrey J, Wachter H et al (1996) Neopterin activates transcription factor nuclear factor-kappa B in vascular smooth muscle cells. FEBS Lett 391:181–184

    Article  CAS  PubMed  Google Scholar 

  • Hoves S, Trapani JA, Voskoboinik I (2010) The battlefield of perforin/granzyme cell death pathways. J Leukoc Biol 87:237–243

    Article  CAS  PubMed  Google Scholar 

  • Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG (2016) Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst 108:djw144. 11 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N (2020) The Nrf2, thioredoxin and glutathione system in tumorigenesis and anticancer therapies. Antioxidants 9:1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Pasare C (1950) Innate control of adaptive immunity: beyond the three-signal paradigm. J Immunol 198:3791–3800

    Article  Google Scholar 

  • Jang JE (2017) Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep 20:558–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jounai N, Kobiyama K, Takeshita F, Ishii KJ (2013) Recognition of damage-associated, nucleic acid-related molecular patterns during inflammation and vaccination. Front Cell Infect Microbiol 2:168. 13 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaminski MM, Sauer SW, Klemke CD, Suss D, Okun JG, Krammer PH et al (1950) Mitochondrial reactive oxygen species control t cell activation by regulatine il-2 and il-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J Immunol 184:4827–4841

    Article  Google Scholar 

  • Kanduc D (2019) From hepatitis C virus immunoproteomics to rheumatology via cross-reactivity in one table. Curr Opin Reheumatol 31:488–492

    Article  CAS  Google Scholar 

  • Karin M (2009) NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141. 14 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelkka T, Pizzolla A, Laurila JP, Friman T, Gustafsson R et al (2013) Mice lacking NCF1 exhibit reduced growth of implanted melanoma and carcinoma tumors. PLoS One 8:e84148

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S (2013) Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 18:1497–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Kumar A, Chang CH, Pyaram K (1950) Reactive oxygen species regulate the inflammatory function of nkt cells through promyelocytic leukemia zinc finger. J Immunol 199:3478–3487

    Article  Google Scholar 

  • Kim HD, Song GW, Park S, Jung MK, Kim MH, Kang HJ et al (2018) Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterol 155:1936–1950

    Article  CAS  Google Scholar 

  • Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Kawasaki-Koyanagi A, Sueyoshi N, Kanai A, Yogita H, Okumura K (2002) Localization of Fas ligand in cytoplasmic granules of CD8+ cytotoxic T lymphocytes and natural killer cells: participation of Fas ligand in granule exocytosis model of cytotoxicity. Biochem Biophys Res Commun 296:328–336

    Article  CAS  PubMed  Google Scholar 

  • Komohara Y, **ushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kraaij MD, Savage ND, van der Kooij SW, Koekkoek K, Wang J, van den Berg JM et al (2010) Induction of regulatory t cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci U S A 107:17686–17691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratky W, Reis E, Sousa C, Oxenius A, Sporri R (2011) Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination. Proc Natl Acad Sci U S A 108:17414–17419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP et al (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206:1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendeckel U, Wolke C (2022) Redox-Regulation in cancer stem cells. Biomedicine 10:2413

    CAS  Google Scholar 

  • Lendeckel U, Venz S, Wolke C (2022) Macrophages: shapes and functions. Chem Texts 8:12

    CAS  Google Scholar 

  • Ligtenberg MA, Cinar O, Holmdahl R, Mougiakakos D, Kiessling R (2015) Methylcholenthrene induced sarcomas develop independently from NOX2-derived ROS. PLoS One 10:e0129786

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Zheng W, Liu J, Zhang Y, Qin H, Wu H et al (2013) Oxidative stress in malignant melanoma enhances tumor necrosis factor-alpha secretion of tumor-associated macrophages that promote cancer cell invasion. Antioxid Redox Signal 19:1337–1355

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Wang WH, Chen SH, Chang YW, Hung LC et al (2017) Lipopolysaccharide-induced nitric oxide, prostaglandin E2, and cytokine production of mouse and human macrophages are suppressed by pheophytin-b. Int J Mol Sci 18:2637. 14 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Lang R, Zhao J, Zhang X, Pringle GA et al (2011) CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130:645–655

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Cao J, Gao X, Zhang J, Wang L et al (2016) Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumour Biol 37:14083–14088

    Article  CAS  PubMed  Google Scholar 

  • Los M, Schenk H, Hexel K, Baeuerle PA, Dröge W, Schulze-Osthoff K (1995) IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J 14:3731–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maj T, Wang W, Crespo J, Zhang HJ, Wang WM, Wei S et al (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18:1332–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R (2019) Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers 11:1756. 21 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martner A, Aurelius J, Rydstrom A, Hellstrand K, Thoren FB (2011) Redox remodeling by dendritic cells protects antigen-specific T cells against oxidative stress. J Immunol 187:6243–6248

    Article  CAS  PubMed  Google Scholar 

  • Martner A, Thoren FB, Aurelius J, Hellstrand K (2013) Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev 27:209–216

    Article  CAS  PubMed  Google Scholar 

  • Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, Mummert ME et al (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171:3010–3018

    Article  CAS  PubMed  Google Scholar 

  • Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally A, Hill GR, Sparwasser T, Thmas R, Steptoe RJ (2011) CD4(+) CD25(+) regulatory T cells control CD8(+) T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108:7529–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Liang H, Hu J, Liu S, Hao X et al (2018) PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer 9:2938–2945

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maclver NJ et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  Google Scholar 

  • Mimura K, Kua LF, Shimasaki N, Shiraishi K, Nakajima S et al (2017) Upregulation of thioredoxin-1 in activated human NK cells confers increased tolerance to oxidative stress. Cancer Immunol Immunother 66:605–613

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–230

    Article  CAS  PubMed  Google Scholar 

  • Mocsai A (2013) Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210:1283–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar E, Swamy M, Holzer M, Beck-Garcia K, Worch R, Thiele C et al (2012) Cholesterol and sphimgomyelin drive ligand-independent t-cell antigen receptor nanoclustering. J Biol Chem 287:42664–42674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  • Murr C, Widner B, Wirleitner B, Fuchs D (2002) Neopterin as a marker for immune system activation. Curr Drug Metab 3:175–187

    Article  CAS  PubMed  Google Scholar 

  • Nadimpalli SK, Amancha PK (2010) Evolution of mannose 6-phosphate receptors (MPR300 and 46): lysosomal enzyme sorting proteins. Curr Protein Pept Sci 11:68–90

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689

    Article  CAS  PubMed  Google Scholar 

  • Natoli G, Ostuni R (2019) Adaptation and memory in immune responses. Nat Immunol 20:783–792

    Article  CAS  PubMed  Google Scholar 

  • Netea-Maier RT, Smit JWA, Netea MG (2018) Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett 413:102–109

    Article  CAS  PubMed  Google Scholar 

  • Niedbala W, Wei XQ, Piedrafita D, Xu D, Liew FY (1999) Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur J Immunol 29:2498–2505

    Article  CAS  PubMed  Google Scholar 

  • Niedbala W, Cai B, Liew FY (2006) Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis 65:37–40

    Article  CAS  Google Scholar 

  • Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ et al (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18:3281–3292

    Article  CAS  PubMed  Google Scholar 

  • Oflazoglu E, Stone IJ, Brown L, Gordon KA, van Rooijen N et al (2009) Macrophages and Fc-receptor interactions contribute to the antitumor activities of the anti-CD40 antibody SGN-40. Br J Cancer 100:113–117

    Article  CAS  PubMed  Google Scholar 

  • Ohl K, Tenbrock K (2018) Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol 9:2499. 7 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7:109. 11 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Oppenheim DE, Spreafico R, Etuk A, Malone D, Amofah E et al (2014) Glyco-engineered anti-EGFR mAb elicits ADCC by NK cells from colorectal cancer patients irrespective of chemotherapy. Br J Cancer 110:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W et al (2015) Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 13:47. 12 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce EL, Poffenberger MC, Chang CH, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342:1242454. 30 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Penny HL, Sieow JL, Adriani G, Yeap WH, Ee PSC et al (2016) Warburg metabolism in tumors: macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5:e1191731

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston CC, Maurer MJ, Oberg AL, Visscher DW, Kalli KR et al (2013) The ratios of CD8+ T cells to CD4+ CD25+FOXP3+ and FOXP3-T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS One 8:e80063

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP et al (2018) Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol 17:297–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razumovitch JA, Semenkova GN, Fuchs D, Cherenkevich SN (2003) Influence of neopterin on the generation of reactive oxygen species in human neutrophils. FEBS Lett 549:83–86

    Article  CAS  PubMed  Google Scholar 

  • Roche PA, Furuta K (2015) The ins and outs of mhc class ii-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo de la Vega M, Chapman E, Zhang DD (2018) Nrf2 and the hallmarks of cancer. Cancer Cell 34:21–43

    Article  CAS  PubMed  Google Scholar 

  • Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P (2015) CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J Immunol 195:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ruf M, Moch H, Schraml P (2016) PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer 139:396–403

    Article  CAS  PubMed  Google Scholar 

  • Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79. 7 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D (2010) Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  • Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14:662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schar** NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive Intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45:374–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the b7-cd28 ligand-receptor family. Immunity 44:955–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    CAS  PubMed  Google Scholar 

  • Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90

    Article  PubMed  Google Scholar 

  • Secrist JP, Burns LA, Karnitz L, Koretzky GA, Abraham RT (1993) Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 268:5886–5893

    Article  CAS  PubMed  Google Scholar 

  • Seliger B (2005) Strategies of tumor immune evasion. Bio Drugs 19:347–354

    CAS  Google Scholar 

  • Shen H, Wu N, Nanayakkara G, Fu H, Yang Q, Yang WY et al (2019) Co-signaling receptors regulate t-cell plasticity and immune tolerance. Front Biosci 24:96–132

    Article  Google Scholar 

  • Shimizu K, Iyoda T, Okada M, Yamasaki S, Fujii SI (2018) Immune suppression and reversal of the suppressive tumor microenvironment. Int Immunol 30:445–455

    Article  CAS  PubMed  Google Scholar 

  • Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol 15:155–162

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, Sendor AB et al (2017) Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2:e93411

    Article  PubMed  PubMed Central  Google Scholar 

  • Sliger B, Ritz U, Ferrone S (2006) Molecular mechanism of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer 118:129–138

    Article  Google Scholar 

  • Smale ST (2011) Hierarchies of NF-κB target-gene regulation. Nat Immunol 12:689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WM, Purvis IJ, Bomstad CN, Labak CM, Velpula KK, Tsung AJ, Regan JN, Venkataraman S, Vibhakar R, Asuthkar S (2019) Therapeutic targeting of immune checkpoints with small molecule inhibitors. Am J Transl Res 11:529–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somoza C, Lanier LL (1995) T-cell costimulation via CD28-CD86 and CD40-CD40 ligand interactions. Res Immunol 146:171–176

    Article  CAS  PubMed  Google Scholar 

  • Stanford SM, Rapini N, Bottini N (2012) Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunol 137:1–19

    Article  CAS  Google Scholar 

  • Sucher R, Fischler K, Oberhuber R, Kronberger I, Margreiter C, Ollinger R et al (2012) DO and regulatory T cell support are critical for cytotoxic T lymphocyte-associated ag-4 Ig-mediated long-term solid organ allograft survival. J Immunol 188:37–46

    Article  CAS  PubMed  Google Scholar 

  • Sugiura A, Rathmell JC (2018) Metabolic barriers to T cell function in tumors. J Immunol 200:400–407

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lu Y, Saredy J, Wang X, Drummer Iv C, Shao Y et al (2020a) ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 37:101696. 21 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang X, Saredy J, Yuan Z, Yang X (2020b) Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol 37:101759. 13 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Yang X, Yuan Z, Wang H (2020c) Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol 40:1990–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthanthiran M, Anderson ME, Sharma VK, Meister A (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A 87:3343–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syn NL, Teng MW, Mok TS, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18:e731–e741

    Article  PubMed  Google Scholar 

  • Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522

    Article  CAS  PubMed  Google Scholar 

  • Thompson ED, Enriquez HL, Fu YX, Engelhard VH (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorén FB, Betten A, Romero AI, Hellstrand K (2007) Cutting edge: antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J Immunol 179:21–25

    Article  PubMed  Google Scholar 

  • Tsou P, Katayama H, Ostrin EJ, Hanash S (2016) The emerging role of B cells in tumor immunity. Cancer Res 76:5597–5601

    Article  CAS  PubMed  Google Scholar 

  • Tu K, Li J, Mo H, **an Y, Xu Q, **ao X (2021) Identification and validation of redox–immune based prognostic signature for hepatocellular carcinoma. Int J Med Sci 18:2030–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S (2019) On the horizon: targeting next generation immune checkpoints for cancer treatment. Chemotherapy 64:62–80

    Article  CAS  PubMed  Google Scholar 

  • Turpaev K, Glatigny A, Bignon J, Delacroix H, Drapier JC (2010) Variation in gene expression profiles of human monocytic U937 cells exposed to various fluxes of nitric oxide. Free Radic Biol Med 48:298–305

    Article  CAS  PubMed  Google Scholar 

  • Uribe-Querol E, Rosales C (2015) Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015:983698, 21 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Varn FS, Wang Y, Mullins DW, Fiering S, Cheng C (2017) Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment. Cancer Res 77:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel P, Mayer A (2016) Hypoxia-driven adenosine accumulation: a crucial microenvironmental factor promoting tumor progression. Adv Exp Med Biol 876:177–183. New York, NY: Springer New York

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES (2016) Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells. Mol Cancer Ther 15:1879–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachostergios PJ, Oikonomou KG, Gibilaro E, Apergis G (2015) Elevated lactic acid is a negative prognostic factor in metastatic lung cancer. Cancer Biomark 15:725–734

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Nakajima H (2012) Coinhibitory molecules in autoimmune diseases. Clin Dev Immunol 2012:269756. 7 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Fujihara C, Radtke AJ, Chiang YJ, Bhatia S, Germain RN et al (2017) Co-stimulatory function in primary germinal center responses: Cd40 and b7 are required on distinct antigen-presenting cells. J Exp Med 214:2795–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martinez-Reyes I et al (2019) Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiskopf K, Weissman IL (2015) Macrophages are critical effectors of antibody therapies for cancer. MAbs 7:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss G, Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G et al (1993) Neopterin modulates toxicity mediated by reactive oxygen and chloride species. FEBS Lett 321:89–92

    Article  CAS  PubMed  Google Scholar 

  • Wenes M, Shang M, Matteo MD, Govera J, Martin-Perez R et al (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24:701–715

    Article  CAS  PubMed  Google Scholar 

  • Werlenius O, Aurelius J, Hallner A, Akhiani AA, Simpanen M et al (2016) Reactive oxygen species induced by therapeutic CD20 antibodies inhibit natural killer cell-mediated antibody-dependent cellular cytotoxicity against primary CLL cells. Oncotarget 7:32046–32053

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Yim JJ et al (1990) Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J Biol Chem 265:3189–3192

    Article  CAS  PubMed  Google Scholar 

  • Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Biol Chem Hoppe Seyler 370:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Wheeler ML, Defranco AL (1950) Prolonged production of reactive oxygen species in response to b cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189:4405–4416

    Article  Google Scholar 

  • Widner B, Werner ER, Schennach H, Wachter H, Fuchs D (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43:2424–2426

    Article  CAS  PubMed  Google Scholar 

  • Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13

    Article  CAS  PubMed  Google Scholar 

  • Wingren AG, Parra E, Varga M, Kalland T, Sjogren HO, Hedlund G et al (1995) T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev Immunol 15:235–253

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP et al (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witztum JL, Lichtman AH (2014) The influence of innate and adaptive immune responses on atherosclerosis. Ann Rev Pathol 9:73–102

    Article  CAS  Google Scholar 

  • Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Lu H, Bai Y (2019) Nrf2 in cancers: a double-edged sword. Cancer Med 8:2252–2267

    Article  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a C, Rao X, Zhong J (2017) Role of t lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res 2017:6494795. 6 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • **ng F, Hu Q, Qin Y, Xu J, Zhang B, Yu X, Wang W (2022) The relationship of redox with hallmarks of cancer: the importance of homeostasis and context. Front Oncol 12:862743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y (2015) Cancer immunotherapy harnessing the immune system to battle cancer. J Clin Invest 125:3335–3337

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1. 9 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Fang P, Yu D, Zhang L, Zhang D, Jiang X (2016) Chronic kidney disease induces inflammatory cd40+ monocyte differentiation via homocysteine elevation and DNA hypomethylation. Circ Res 119:1226–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Jung J, Hong SW, Lee JY, Han D, Kim KS et al (2019) Unregulated antigen presenting cell activation by t cells breaks self tolerance. Proc Natl Acad Sci U S A 116:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40:2969–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen GJ, Demissie E, Pillai S (2017) B lymphocytes and cancer: a love-hate relationship. Trends Cancer 2:747–757

    Article  Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AHM, Ballimer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, **n H, Zhang W, Yazaki PJ, Zhang Z et al (2016) CD5 binds to interleukin-6 and induces a feed-forward loop with the transcription factor STAT3 in B cells to promote cancer. Immunity 44:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F (2010) Perforin: more than just a pore-forming protein. Int Rev Immunol 29:56–76

    Article  PubMed  Google Scholar 

  • Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18:14–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M.P. (2023). Immune System, Redox Signaling, and Cancer Immunity. In: Redox Regulation and Therapeutic Approaches in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-7342-2_6

Download citation

Publish with us

Policies and ethics

Navigation