Adaptive Multi-resolution Simulations of Cascaded Converters

  • Conference paper
  • First Online:
Power Engineering and Intelligent Systems (PEIS 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1097))

  • 207 Accesses

Abstract

This paper presents an efficient modeling strategy for fast and accurate simulation of cascaded power electronic converters. The computational cost of simulations is drastically reduced by using Adaptive Multi-resolution Simulation (AMRS) algorithm. The numerical experiments on a benchmark model validate the efficacy of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohan N, Robbins WP, Undeland TM, Nilssen R, Mo O (1994) Simulation of power electronic and motion control systems-an overview. Proc IEEE 82(8):1287–1302

    Google Scholar 

  2. Wilson TG (1988) Life after the schematic: the impact of circuit operation on the physical realization of electronic power supplies. Proc IEEE 76(4):325–334

    Google Scholar 

  3. Christoph D, Peter T (1999) Fast simulation technique for power electronic circuits with widely different time constants. IEEE Trans Ind Appl 35(3):657–662

    Article  Google Scholar 

  4. Toshiji K, Kaoru I, Takayuki F, Yoshinori K (2009) Multirate analysis method for a power electronic system by circuit partitioning. IEEE Trans Power Electron 24(12):2791–2802

    Article  Google Scholar 

  5. Shampine LF, Reichelt MW (1997) The matlab ode suite. SIAM J Sci Comput 18(1):1–22

    Google Scholar 

  6. Hovland S, Gravdahl JT (2006) Order reduction and output feedback stabliization of an unstable cfd model. In: 2006 American control conference, pp 436–441. IEEE

    Google Scholar 

  7. Telescu M, Tanguy N, Bréhonnet P, Vilbé P, Calvez L-C, Huret F (2005) Model-order reduction of VLSI circuit interconnects via a Laguerre representation. In: Proceedings 9th IEEE workshop on signal propagation on interconnects, 2005, pp 107–110. IEEE

    Google Scholar 

  8. Karen W, Jaime P, Jacob W (2002) An Arnoldi approach for generation of reduced-order models for turbomachinery. Comput Fluids 31(3):369–389

    Article  Google Scholar 

  9. Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear, time-varying systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(2):171–187

    Google Scholar 

  10. Remis RF, van den Berg PM (1997) A modified Lanczos algorithm for the computation of transient electromagnetic wavefields. IEEE Trans Microw Theory Tech 45(12):2139–2149

    Google Scholar 

  11. Nicola F, Giovanni S, Vincenzo T (1995) State-space models and order reduction for Dc-Dc switching converters in discontinuous modes. IEEE Trans Power Electron 10(6):640–650

    Article  Google Scholar 

  12. Pekarek SD, Wasynczuk O, Walters EA, Jatskevich JV, Lucas CE, Wu N, Lamm PT (2004) An efficient multirate simulation technique for power-electronic-based systems. IEEE Trans Power Syst 19(1):399–409

    Google Scholar 

  13. Nahvi SA, Bazaz MA, Khan H (2017) Model order reduction in power electronics: issues and perspectives. In: 2017 international conference on computing, communication and automation (ICCCA), pp 1417–1421. IEEE

    Google Scholar 

  14. Khan H, Bazaz MA, Nahvi SA (2017) Model order reduction of power electronic circuits. In: 2017 6th international conference on computer applications in electrical engineering-recent advances (CERA), pp 450–455. IEEE

    Google Scholar 

  15. Sanders SR, Noworolski JM, Liu XZ, Verghese GC (1991) Generalized averaging method for power conversion circuits. IEEE Trans Power Electron 6(2):251–259

    Google Scholar 

  16. Fung KK, Hui SYR (1996) Fast simulation of multistage power electronic systems with widely separated operating frequencies. IEEE Trans Power Electron 11(3):405–412

    Article  Google Scholar 

  17. Liberzon D (2003) Switching in systems and control, vol 190. Springer

    Google Scholar 

  18. Massarini A, Kazimierczuk MK (1997) Self-capacitance of inductors. IEEE Trans Power Electron 12(4):671–676

    Google Scholar 

  19. Khan H, Bazaz MA, Nahvi SA (2020) Adaptive multi-resolution framework for fast simulation of power electronic circuits. IET Circuits Devices Syst 14(4):537–546

    Google Scholar 

  20. Khan H, Bazaz MA, Nahvi SA (2018) Simulation acceleration of high-fidelity nonlinear power electronic circuits using model order reduction. IFAC-PapersOnLine 51(1):273–278

    Google Scholar 

  21. Khan H, Bazaz MA, Nahvi SA (2019) Accelerated simulation across multiple resolutions for power electronic circuits. In: 2019 fifth Indian control conference (ICC), pp 195–200. IEEE

    Google Scholar 

  22. Maksimovic D, Stankovic AM, Thottuvelil VJ, Verghese GC (2001) Modeling and simulation of power electronic converters. Proc IEEE 89(6):898–912

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Mushtaq Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhat, A.M., Bazaz, M.A. (2024). Adaptive Multi-resolution Simulations of Cascaded Converters. In: Shrivastava, V., Bansal, J.C., Panigrahi, B.K. (eds) Power Engineering and Intelligent Systems. PEIS 2023. Lecture Notes in Electrical Engineering, vol 1097. Springer, Singapore. https://doi.org/10.1007/978-981-99-7216-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7216-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7215-9

  • Online ISBN: 978-981-99-7216-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation