Chaotic Microwave Photon Sensing

  • Chapter
  • First Online:
Novel Optical Fiber Sensing Technology and Systems

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 28))

  • 192 Accesses

Abstract

Chaotic signals have important applications in communication systems and radar systems because of their good randomness and correlation characteristics. It is easy to generate chaotic lasers with bandwidth of 10 GHz by using semiconductor lasers. Due to its many outstanding characteristics, such as high speed, resist multipath fading, low power consumption, high penetration, high positioning accuracy and high security, Ultrawideband (UWB) technology has been widely used in short-range wireless communication, secure communication, radar detection, intelligent traffic positioning and other commercial, civil and military fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ieello GR, Rogersoo GD. Ultra-wideband wireless systems. IEEE Micro Mag. 2003;4(2):36–47.

    Article  Google Scholar 

  2. Roy S, Foerster JR, Somayazulu VS, et al. Ultrawideband radio design: the promise of high-speed, short range wireless connectivity. Proc IEEE. 2004;92(2):295–311.

    Article  Google Scholar 

  3. Pan SL, Yao JP. Optical generation of polarity and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer. Opt Lett. 2009;34(9):1312–4.

    Article  ADS  Google Scholar 

  4. Federal Communications Commission. First report and order in the matter of revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. Rep. ET-Docket 98-153, FCC 02-48

    Google Scholar 

  5. Han SM, Popov O, Dmitriev AS. Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology. IEEE Trans Microw Theory Tech. 2008;56(10):2229–36.

    Article  ADS  Google Scholar 

  6. Zhang FZ, Wu J, Fu SN, et al. Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber. Opt Express. 2010;18(15):15870–5.

    Article  ADS  Google Scholar 

  7. Feng XH, Li ZH, Guan B, et al. Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator. Opt Express. 2010;18(4):3643–8.

    Article  ADS  Google Scholar 

  8. Wan MY, Yee C, Yee ML. Wireless ultra-wideband communications using radio over fiber. In: IEEE conference on ultra-wideband systems and technologies; 2003.

    Google Scholar 

  9. Zeng F, Yao JP. An approach to ultrawideband pulse generation and distribution over optical fiber. IEEE Photonics Technol Lett. 2006;18(7):823–5.

    Article  ADS  Google Scholar 

  10. Yao JP, Zeng F, Wang Q. Photonic generation of ultrawideband signals. J Lightwave Technol. 2007;25(11):3219–35.

    Article  ADS  Google Scholar 

  11. Salkintzis AK, Fors C, Pazhyannur R. WLAN-GPRS integration for next-generation mobile data networks. IEEE Wirel Commun. 2002;9(5):112–24.

    Article  Google Scholar 

  12. Juan YS, Lin FY. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser. Opt Express. 2010;18(9):9664–70.

    Article  ADS  Google Scholar 

  13. Chen HW, Wang TL, Li M, et al. Optically tunable multiband UWB pulse generation. Opt Express. 2008;16(10):7447–52.

    Article  ADS  Google Scholar 

  14. Chang QJ, Tian Y, Ye T, et al. A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion. IEEE Photonics Technol Lett. 2008;20(19):1651–3.

    Article  ADS  Google Scholar 

  15. Zhao Y, Zhen XP, Zhang HY, et al. UWB-over-fiber transmission system using a dual-output Mach-Zehnder modulator. Chin Opt Lett. 2010;8(5):454–6.

    Article  Google Scholar 

  16. Li J, Ning TG, Pei L, et al. Optical ultra-wideband pulse generation and distribution using a dual-electrode Mach-Zehnder modulator. Chin Opt Lett. 2010;8(2):138–41.

    Article  Google Scholar 

  17. Shams H, Anandarajah AK, Perry P, et al. Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique. J Opt Commun Netw. 2010;2(3):122–30.

    Article  Google Scholar 

  18. Wang J, Sun QZ, Sun JQ, et al. All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide. Opt Express. 2009;17(5):3521–30.

    Article  ADS  Google Scholar 

  19. Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technol Lett. 2006;18(19):2062–4.

    Article  ADS  Google Scholar 

  20. Zadok A, Wu XX, Sendowski J, et al. Photonic generation of ultra-wideband signals via pulse compression in a highly nonlinear fiber. IEEE Photonics Technol Lett. 2010;22(4):135–7.

    Article  Google Scholar 

  21. Bolea M, Mora J, Ortega B, et al. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats. Opt Express. 2009;17(7):5023–32.

    Article  ADS  Google Scholar 

  22. Wang SG, Chen HW, **n M, et al. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture. Opt Lett. 2009;34(20):3092–4.

    Article  ADS  Google Scholar 

  23. Zhou EB, Xu X, Lui KS, et al. A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions. IEEE Photonics Technol Lett. 2010;22(14):1063–5.

    Article  ADS  Google Scholar 

  24. Liu F, Wang T, Zhang Z, et al. On-chip photonic generation of ultra-wideband monocycle pulses. Electron Lett. 2009;45(24):1247–9.

    Article  ADS  Google Scholar 

  25. Abtahi M, Mirshafiei M, Magne J, et al. Ultra-wideband waveform generator based on optical pulse-sha** and FBG tuning. IEEE Photonics Technol Lett. 2008;20(2):135–7.

    Article  ADS  Google Scholar 

  26. Yu XB, Gibbon TB, Pawlik M, et al. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser. Opt Express. 2009;17(12):9680–7.

    Article  ADS  Google Scholar 

  27. Lv H, Yu YL, Shu T, et al. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser. Opt Express. 2010;18(7):7219–27.

    Article  ADS  Google Scholar 

  28. Khan MH, Shen H, Xuan Y, et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photonics. 2010;4:117–21.

    Article  ADS  Google Scholar 

  29. Peled Y, Tur M, Zadok A. Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission. IEEE Photonics Technol Lett. 2010;22(22):1692–4.

    Article  ADS  Google Scholar 

  30. Wang AB, Zhang MJ, Xu H, et al. Location of wire faults using chaotic signal. IEEE Electron Device Letter. 2011;32(3):372–4.

    Article  ADS  Google Scholar 

  31. Li P, Wang YC, Zhang JZ. All-optical fast random number generator. Opt Express. 2010;18(19):20360–9.

    Article  ADS  Google Scholar 

  32. Zhang MJ, Liu TG, Wang AB, et al. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Opt Lett. 2011;36(6):1008–10.

    Article  ADS  Google Scholar 

  33. Zhang MJ, Zheng JY, Wang AB, et al. Chaotic ultra-wideband over fiber link based on optical feedback laser diode. Microw Opt Technol Lett. 2013;55(7):1504–7.

    Article  Google Scholar 

  34. Zhang MJ, Liu M, Wang AB, et al. Photonic generation of ultrawideband signals based on a gain-switched semiconductor laser with optical feedback. Appl Opt. 2013;52(31):7512–6.

    Article  ADS  Google Scholar 

  35. Lansford J. UWB coexistence and cognitive radio. International workshop on ultra-wideband system; 2004.

    Google Scholar 

  36. Velanas P, Bogris A, Argyris A, et al. High-speed all-optical first-and second-order differentiators based on cross-phase modulation in fibers. J Lightw Technol. 2008;26(18):3269–76.

    Article  ADS  Google Scholar 

  37. Liu Y, Kikuchin, OJ. Controlling dynamical behavior of a semiconductor laser with external optical feedback. Phys Rev E. 1995; 51(4):2697–700.

    Google Scholar 

  38. Takiguchi Y, Liu Y, Obsubo J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback. Opt Lett. 1998;23(17):1369–71.

    Article  ADS  Google Scholar 

  39. Wang XF, **a GQ, Wu ZM. Theoretical investigations on the polarization performances of current-modulated VCSELs subject to weak optical feedback. J Opt Soc Am B Opt Phys. 2009;26(1):160–8.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjiang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, M., Zhang, J., Qiao, L., Wang, T. (2024). Chaotic Microwave Photon Sensing. In: Novel Optical Fiber Sensing Technology and Systems. Progress in Optical Science and Photonics, vol 28. Springer, Singapore. https://doi.org/10.1007/978-981-99-7149-7_5

Download citation

Publish with us

Policies and ethics

Navigation