Clinical Trials of Cell Therapy and Regenerative Medicine in Muscular Dystrophies

  • Reference work entry
  • First Online:
Handbook of Stem Cell Applications
  • 210 Accesses

Abstract

Cell therapy could form part of the future treatment of degenerative disorders of genetic origin that affect skeletal muscles, such as muscular dystrophies. This strategy could produce clinical benefits by fulfilling three fundamental properties: (a) genetic complementation, which makes it possible to restore in the patient’s muscle fibers the proteins whose deficiency of genetic origin is the cause of the disease, (b) formation of new muscle fibers, which open the possibility of reconstituting the skeletal muscle lost by the degenerative process of muscular dystrophy, and (c) generation of new satellite cells, which would allow restoring the pool of muscle-specific stem cells. Extensive research in rodents and other animal models has studied these properties. However, it has been the translational studies in macaques that have most helped define the transplantation protocols that have proven to be reproducible in clinical trials. Although muscle fiber regeneration has been shown to depend on satellite cells through their activation and conversion into myoblasts, several cell types other than satellite cells and myoblasts have been reported in animal studies to possess some of the myogenic properties necessary for cell therapy of muscular dystrophies. However, only the administration of satellite cell-derived myoblasts has so far proven to be able to fulfill these properties in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CD:

Cluster of differentiation

DAPI:

4′,6-diamidino-2-phenylindole

DMD:

Duchenne muscular dystrophy

DNA:

Deoxyribonucleic acid

FISH:

Fluorescent in situ hybridization

mdx:

X chromosome-linked muscular dystrophy

MTs/SMFs:

Myotubes and/or small muscle fibers

PCR:

Polymerase chain reaction

References

  • Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR (2021) Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol 131:871–880

    Article  PubMed  Google Scholar 

  • Bachrach E, Li S, Perez AL, Schienda J, Liadaki K, Volinski J, Flint A et al (2004) Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci U S A 101:3581–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  CAS  PubMed  Google Scholar 

  • Blaauw B, Reggiani C (2014) The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil 35:3–10

    Article  CAS  PubMed  Google Scholar 

  • Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 80:4856–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blau HM, Pavlath GK, Rich K, Webster SG (1990) Localization of muscle gene products in nuclear domains: does this constitute a problem for myoblast therapy? In: Griggs RC, Karpati G (eds) Myoblast transfer therapy. Springer, Boston, pp 167–172

    Chapter  Google Scholar 

  • Brimah K, Ehrhardt J, Mouly V, Butler-Browne GS, Partridge TA, Morgan JE (2004) Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors. Hum Gene Ther 15:1109–1124

    Article  CAS  PubMed  Google Scholar 

  • Brussee V, Merly F, Tardif F, Tremblay JP (1998) Normal myoblast implantation in mdx mice prevents muscle damage by exercise. Biochem Biophys Res Commun 250:321–327

    Article  CAS  PubMed  Google Scholar 

  • Burrow KL, Coovert DD, Klein CJ, Bulman DE, Kissel JT, Rammohan KW, Burghes AH et al (1991) Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. CIDD Study Group. Neurology 41:661–666

    Article  CAS  PubMed  Google Scholar 

  • Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137:119–149

    Article  CAS  PubMed  Google Scholar 

  • Carlson BM (2008) Muscle regeneration in animal models. In: Schiaffino S, Partridge T (eds) Skeletal muscle repair and regeneration. Springer, Dordrecht, pp 163–179

    Chapter  Google Scholar 

  • Cazzato G, Walton JN (1968) The pathology of the muscle spindle. A study of biopsy material in various muscular and neuromuscular diseases. J Neurol Sci 7:15–70

    Article  CAS  PubMed  Google Scholar 

  • Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang NC, Chevalier FP, Rudnicki MA (2016) Satellite cells in muscular dystrophy – lost in polarity. Trends Mol Med 22:479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charville GW, Cheung TH, Yoo B, Santos PJ, Lee GK, Shrager JB, Rando TA (2015) Ex vivo expansion and in vivo self-renewal of human muscle stem cells. Stem Cell Reports 5:621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappalupi S, Salvadori L, Luca G, Riuzzi F, Calafiore R, Donato R, Sorci G (2019) Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy? Cell Prolif 52:e12599

    Article  PubMed  PubMed Central  Google Scholar 

  • Chretien F, Dreyfus PA, Christov C, Caramelle P, Lagrange JL, Chazaud B, Gherardi RK (2005) In vivo fusion of circulating fluorescent cells with dystrophin-deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression. Am J Pathol 166:1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke MS, Khakee R, McNeil PL (1993) Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci 106(Pt 1):121–133

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Morgan J, Babbs R, Gilula Z, Karrison T, Meier P (1982) A statistical analysis of the loss of muscle strength in Duchenne’s muscular dystrophy. Res Commun Chem Pathol Pharmacol 37:123–138

    CAS  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  • Conceição MS, Vechin FC, Lixandrão M, Damas F, Libardi CA, Tricoli V, Roschel H et al (2018) Muscle fiber hypertrophy and myonuclei addition: a systematic review and meta-analysis. Med Sci Sports Exerc 50:1385–1393

    Article  PubMed  Google Scholar 

  • Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M et al (2016) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 8:1470–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulet B, Lacombe F, Lazerges C, Daussin PA, Rossano B, Micallef JP, Chammas M et al (2006) Short- or long-term effects of adult myoblast transfer on properties of reinnervated skeletal muscles. Muscle Nerve 33:254–264

    Article  PubMed  Google Scholar 

  • Crahes M, Bories MC, Viquin JT, Marolleau JP, Desnos M, Larghero J, Soulat G et al (2018) Long-term engraftment (16 years) of myoblasts in a human infarcted heart. Stem Cells Transl Med 7:705

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32:128–131

    Article  CAS  PubMed  Google Scholar 

  • Decrouy A, Renaud JM, Davis HL, Lunde JA, Dickson G, Jasmin BJ (1997) Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther 4:401–408

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt J, Brimah K, Adkin C, Partridge T, Morgan J (2007) Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul Disord 17:631–638

    Article  PubMed  Google Scholar 

  • Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114:235–244

    Article  CAS  PubMed  Google Scholar 

  • Fukushima MG, Furlan I, Chiavegatti T, Kiyomoto BH, Godinho RO (2005) Ectopic development of skeletal muscle induced by subcutaneous transplant of rat satellite cells. Braz J Med Biol Res 38:367–374

    Article  CAS  PubMed  Google Scholar 

  • Garcia SM, Tamaki S, Lee S, Wong A, Jose A, Dreux J, Kouklis G et al (2018) High-yield purification, preservation, and serial transplantation of human satellite cells. Stem Cell Reports 10:1160–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, Pouzet B et al (2002) Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106:I131–I136

    Article  PubMed  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross JG, Morgan JE (1999) Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 22:174–185

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Pavlath GK, Lanctot AM, Sharma KR, Miller RG, Steinman L, Blau HM (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356:435–438

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3:970–977

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, Stein J et al (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagege AA, Carrion C, Menasche P, Vilquin JT, Duboc D, Marolleau JP, Desnos M et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361:491–492

    Article  PubMed  Google Scholar 

  • Hall ZW, Ralston E (1989) Nuclear domains in muscle cells. Cell 59:771–772

    Article  CAS  PubMed  Google Scholar 

  • Hauser MA, Amalfitano A, Kumar-Singh R, Hauschka SD, Chamberlain JS (1997) Improved adenoviral vectors for Duchenne muscular dystrophy gene therapy. Neuromuscul Disord 7:277–283

    Article  CAS  PubMed  Google Scholar 

  • Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS (2001) Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5(nlacZl+) mouse. Gene Ther 8:778–783

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Dennis RG, Larkin L, Baar K (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98:706–713

    Article  PubMed  Google Scholar 

  • Huard J, Bouchard JP, Roy R, Malouin F, Dansereau G, Labrecque C, Albert N et al (1992) Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve 15:550–560

    Article  CAS  PubMed  Google Scholar 

  • Irintchev A, Zweyer M, Wernig A (1995) Cellular and molecular reactions in mouse muscles after myoblast implantation. J Neurocytol 24:319–331

    Article  CAS  PubMed  Google Scholar 

  • Irintchev A, Langer M, Zweyer M, Theisen R, Wernig A (1997) Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol Lond 500:775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irintchev A, Rosenblatt JD, Cullen MJ, Zweyer M, Wernig A (1998) Ectopic skeletal muscles derived from myoblasts implanted under the skin. J Cell Sci 111:3287–3297

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Vilquin JT, Skuk D, Roy B, Goulet M, Lille S, Dugre FJ et al (1998) Myoblast transplantation in non-dystrophic dog. Neuromuscul Disord 8:95–110

    Article  CAS  PubMed  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Butler-Browne GS, Thornell LE (1999) Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kang PB, Lidov HG, White AJ, Mitchell M, Balasubramanian A, Estrella E, Bennett RR et al (2010) Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy. Muscle Nerve 41:746–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpati G, Ajdukovic D, Arnold D, Gledhill RB, Guttman R, Holland P, Koch PA et al (1993) Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 34:8–17

    Article  CAS  PubMed  Google Scholar 

  • Khodabukus A (2021) Tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. Front Physiol 12:619710

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieny P, Chollet S, Delalande P, Le Fort M, Magot A, Pereon Y, Perrouin Verbe B (2013) Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann Phys Rehabil Med 56:443–454

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita I, Vilquin JT, Gravel C, Roy R, Tremblay JP (1995) Myoblast allotransplantation in primates. Muscle Nerve 18:1217–1218

    CAS  PubMed  Google Scholar 

  • Kinoshita I, Roy R, Dugre FJ, Gravel C, Roy B, Goulet M, Asselin I et al (1996a) Myoblast transplantation in monkeys: control of immune response by FK506. J Neuropathol Exp Neurol 55:687–697

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita I, Vilquin JT, Tremblay JP (1996b) Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: a study using mdx/beta-galactosidase transgenic mice. Acta Neuropathol 91:489–493

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita I, Vilquin JT, Asselin I, Chamberlain J, Tremblay JP (1998) Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin produced only a relatively small increase of dystrophin-positive membrane. Muscle Nerve 21:91–103

    Article  CAS  PubMed  Google Scholar 

  • Klein CJ, Coovert DD, Bulman DE, Ray PN, Mendell JR, Burghes AH (1992) Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers. Am J Hum Genet 50:950–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimczak A, Zimna A, Malcher A, Kozlowska U, Futoma K, Czarnota J, Kemnitz P et al (2020) Co-transplantation of bone marrow-MSCs and myogenic stem/progenitor cells from adult donors improves muscle function of patients with Duchenne muscular dystrophy. Cell 9:1119. https://doi.org/10.3390/cells9051119

    Article  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landfeldt E, Thompson R, Sejersen T, McMillan HJ, Kirschner J, Lochmüller H (2020) Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur J Epidemiol 35:643–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Le TL, Nguyen TM, Morris GE (2014) Monoclonal antibodies for clinical trials of Duchenne muscular dystrophy therapy. Neuromuscul Disord 24:195–200

    Article  PubMed  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liadaki K, Casar JC, Wessen M, Luth ES, Jun S, Gussoni E, Kunkel LM (2012) beta4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem 60:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205:1292–1294

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D (2005) Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 11:245–256

    Article  CAS  PubMed  Google Scholar 

  • Lorant J, Larcher T, Jaulin N, Hedan B, Lardenois A, Leroux I, Dubreil L et al (2018a) Vascular delivery of allogeneic mustem cells in dystrophic dogs requires only short-term immunosuppression to avoid host immunity and generate clinical/tissue benefits. Cell Transplant 27:1096–1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorant J, Saury C, Schleder C, Robriquet F, Lieubeau B, Négroni E, Leroux I et al (2018b) Skeletal muscle regenerative potential of human mustem cells following transplantation into injured mice muscle. Mol Ther 26:618–633

    Article  CAS  PubMed  Google Scholar 

  • Lu QL (2021) Revertant phenomenon in DMD and LGMD2I and its therapeutic implications: a review of study under the mentorship of Terrence Partridge. J Neuromuscul Dis 8:S359–S367

    Article  PubMed  PubMed Central  Google Scholar 

  • Luth ES, Jun SJ, Wessen MK, Liadaki K, Gussoni E, Kunkel LM (2008) Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. J Cell Sci 121:1426–1434

    Article  CAS  PubMed  Google Scholar 

  • Luxameechanporn T, Hadlock T, Shyu J, Cowan D, Faquin W, Varvares M (2006) Successful myoblast transplantation in rat tongue reconstruction. Head Neck 28:517–524

    Article  PubMed  Google Scholar 

  • Marbán E (2018) A mechanistic roadmap for the clinical application of cardiac cell therapies. Nat Biomed Eng 2:353–361

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald CM, Abresch RT, Carter GT, Fowler WM Jr, Johnson ER, Kilmer DD, Sigford BJ (1995) Profiles of neuromuscular diseases. Duchenne muscular dystrophy. Am J Phys Med Rehabil 74:S70–S92

    Article  CAS  PubMed  Google Scholar 

  • McDonald CM, Marbán E, Hendrix S, Hogan N, Ruckdeschel Smith R, Eagle M, Finkel RS et al (2022) Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 399:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z et al (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333:832–838

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Chun S, Asfahani R, Lochmüller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98:1–21

    Article  PubMed  Google Scholar 

  • Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM, Greco CM et al (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20:469–478

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, Ke LY (2020) Identifying the therapeutic significance of mesenchymal stem cells. Cells 9:1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  • Morandi L, Bernasconi P, Gebbia M, Mora M, Crosti F, Mantegazza R, Cornelio F (1995) Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscul Disord 5:291–295

    Article  CAS  PubMed  Google Scholar 

  • Morgan JE, Coulton GR, Partridge TA (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 8:386–396

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Man N, Sewry CA (2011) Monitoring Duchenne muscular dystrophy gene therapy with epitope-specific monoclonal antibodies. Methods Mol Biol 709:39–61

    Article  CAS  PubMed  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y et al (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17:1771–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri M, Torelli S, Brown S, Ugo I, Sabatelli P, Merlini L, Spitali P et al (2007) Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 17:913–918

    Article  PubMed  Google Scholar 

  • Nicholson LV, Davison K, Johnson MA, Slater CR, Young C, Bhattacharya S, Gardner-Medwin D et al (1989) Dystrophin in skeletal muscle. II. Immunoreactivity in patients with Xp21 muscular dystrophy. J Neurol Sci 94:137–146

    Article  CAS  PubMed  Google Scholar 

  • Nissinen M, Kaisto T, Salmela P, Peltonen J, Metsikko K (2005) Restricted distribution of mRNAs encoding a sarcoplasmic reticulum or transverse tubule protein in skeletal myofibers. J Histochem Cytochem 53:217–227

    Article  CAS  PubMed  Google Scholar 

  • Okano T, Matsuda T (1998) Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant 7:435–442

    Article  CAS  PubMed  Google Scholar 

  • Partridge TA (1991) Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve 14:197–212

    Article  CAS  PubMed  Google Scholar 

  • Pavlath GK, Rich K, Webster SG, Blau HM (1989) Localization of muscle gene products in nuclear domains. Nature 337:570–573

    Article  CAS  PubMed  Google Scholar 

  • Perie S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Marolleau JP et al (2014) Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 22:219–225

    Article  CAS  PubMed  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigozzo SR, Da Re L, Romualdi C, Mazzara PG, Galletta E, Fletcher S, Wilton SD et al (2013) Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal. PLoS One 8:e72147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralston E, Hall ZW (1992) Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. J Cell Biol 119:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220:383–389

    Article  CAS  PubMed  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  • Rideau Y, Jankowski LW, Grellet J (1981) Respiratory function in the muscular dystrophies. Muscle Nerve 4:155–164

    Article  CAS  PubMed  Google Scholar 

  • Robertson TA, Grounds MD, Mitchell CA, Papadimitriou JM (1990) Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J Struct Biol 105:170–182

    Article  CAS  PubMed  Google Scholar 

  • Robertson TA, Maley MA, Grounds MD, Papadimitriou JM (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207:321–331

    Article  CAS  PubMed  Google Scholar 

  • Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C et al (2015) Differential gene expression profiling of dystrophic dog muscle after MuStem cell transplantation. PLoS One 10:e0123336

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez AM, Pisani D, Dechesne CA, Turc-Carel C, Kurzenne JY, Wdziekonski B, Villageois A et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero NB, Mezmezian M, Fidziańska A (2013) Main steps of skeletal muscle development in the human: morphological analysis and ultrastructural characteristics of develo** human muscle. Handb Clin Neurol 113:1299–1310

    Article  PubMed  Google Scholar 

  • Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B et al (2011) Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in Duchenne muscular dystrophy dogs. Am J Pathol 179:2501–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau J, Dumont N, Lebel C, Quenneville SP, Côté CH, Frenette J, Tremblay JP (2010) Dystrophin expression following the transplantation of normal muscle precursor cells protects mdx muscle from contraction-induced damage. Cell Transplant 19:589–596

    Article  PubMed  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H et al (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579

    Article  CAS  PubMed  Google Scholar 

  • Schatzberg SJ, Anderson LV, Wilton SD, Kornegay JN, Mann CJ, Solomon GG, Sharp NJ (1998) Alternative dystrophin gene transcripts in golden retriever muscular dystrophy. Muscle Nerve 21:991–998

    Article  CAS  PubMed  Google Scholar 

  • Sherratt TG, Vulliamy T, Dubowitz V, Sewry CA, Strong PN (1993) Exon skip** and translation in patients with frameshift deletions in the dystrophin gene. Am J Hum Genet 53:1007–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu TK, Matsumura K, Hashimoto K, Mannen T, Ishigure T, Eguchi C, Nonaka I et al (1988) A monoclonal antibody against a synthetic polypeptide fragment of dystrophin (amino acid sequence from position 215–264). Proc Jpn Acad 64(Ser B):205–208

    Article  CAS  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Skuk D (2004) Myoblast transplantation for inherited myopathies: a clinical approach. Expert Opin Biol Ther 4:1871–1885

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Tremblay JP (2016) Confirmation of donor-derived dystrophin in a Duchenne muscular dystrophy patient allotransplanted with normal myoblasts. Muscle Nerve 54:979–981

    Article  PubMed  Google Scholar 

  • Skuk D, Tremblay JP (2017a) CD56+ muscle derived cells but not retinal NG2+ perivascular cells of nonhuman primates are myogenic after intramuscular transplantation in immunodeficient mice. J Stem Cell Res Ther 7:377. https://doi.org/10.4172/2157-7633.1000377

    Article  CAS  Google Scholar 

  • Skuk D, Tremblay JP (2017b) The process of engraftment of myogenic cells in skeletal muscles of primates: understanding clinical observations and setting directions in cell transplantation research. Cell Transplant 26:1763–1779

    Article  PubMed  Google Scholar 

  • Skuk D, Tremblay JP (2020) Human muscle precursor cells form human-derived myofibers in skeletal muscles of nonhuman primates: a potential new preclinical setting to test myogenic cells of human origin for cell therapy of myopathies. J Neuropathol Exp Neurol 79:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Roy B, Goulet M, Tremblay JP (1999) Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 155:22–30

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Tremblay JP (2000) Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol 59:197–206

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Tremblay JP (2002) Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 175:112–126

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ et al (2004) Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 9:475–482

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, Dugre FJ et al (2006a) Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65:371–386

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2006b) Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 15:659–663

    Article  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, Hogrel JY et al (2007a) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17:38–46

    Article  PubMed  Google Scholar 

  • Skuk D, Paradis M, Goulet M, Tremblay JP (2007b) Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 84:1307–1315

    Article  PubMed  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2010a) Preservation of muscle spindles in a 27-year-old Duchenne muscular dystrophy patient: importance for regenerative medicine strategies. Muscle Nerve 41:729–730

    Article  PubMed  Google Scholar 

  • Skuk D, Paradis M, Goulet M, Chapdelaine P, Rothstein DM, Tremblay JP (2010b) Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther 18:1689–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2011) Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle. J Neuropathol Exp Neurol 70:770–778

    Article  PubMed  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2013) Electroporation as a method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates. J Neuropathol Exp Neurol 72:723–734

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2014) Intramuscular transplantation of myogenic cells in primates: importance of needle size, cell number, and injection volume. Cell Transplant 23:13–25

    Article  PubMed  Google Scholar 

  • Sopper MM, Hauschka SD, Hoffman E, Ontell M (1994) Gene complementation using myoblast transfer into fetal muscle. Gene Ther 1:108–113

    CAS  PubMed  Google Scholar 

  • Swash M, Fox KP (1976) The pathology of the muscle spindle in Duchenne muscular dystrophy. J Neurol Sci 29:17–32

    Article  CAS  PubMed  Google Scholar 

  • Talim B, Kale G, Topaloglu H, Akçören Z, Caglar M, Gögüş S, Elkay M (2000) Clinical and histopathological study of merosin-deficient and merosin-positive congenital muscular dystrophy. Pediatr Dev Pathol 3:168–176

    Article  CAS  PubMed  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Jefferies J, Byrne B, Lima J, Ambale-Venkatesh B, Ostovaneh MR, Makkar R et al (2019) Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology 92:e866–e878

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062

    Article  PubMed  Google Scholar 

  • Tidball JG, Welc SS, Wehling-Henricks M (2018) Immunobiology of inherited muscular dystrophies. Compr Physiol 8:1313–1356

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, Tonlorenzi R et al (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay JP, Malouin F, Roy R, Huard J, Bouchard JP, Satoh A, Richards CL (1993) Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 2:99–112

    Article  CAS  PubMed  Google Scholar 

  • Van Meter CH Jr, Claycomb WC, Delcarpio JB, Smith DM, de Gruiter H, Smart F, Ochsner JL (1995) Myoblast transplantation in the porcine model: a potential technique for myocardial repair. J Thorac Cardiovasc Surg 110:1442–1448

    Article  PubMed  Google Scholar 

  • Vauchez K, Marolleau JP, Schmid M, Khattar P, Chapel A, Catelain C, Lecourt S et al (2009) Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 17:1948–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira NM, Valadares M, Zucconi E, Secco M, Bueno CR Jr, Brandalise V, Assoni A et al (2012) Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosuppression are able to reach the host muscle and express human dystrophin. Cell Transplant 21:1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Vilquin JT, Asselin I, Guerette B, Kinoshita I, Roy R, Tremblay JP (1995) Successful myoblast allotransplantation in mdx mice using rapamycin. Transplantation 59:422–426

    Article  CAS  PubMed  Google Scholar 

  • Vilquin JT, Guerette B, Puymirat J, Yaffe D, Tome FM, Fardeau M, Fiszman M et al (1999) Myoblast transplantations lead to the expression of the laminin alpha 2 chain in normal and dystrophic (dy/dy) mouse muscles. Gene Ther 6:792–800

    Article  CAS  PubMed  Google Scholar 

  • Vilquin JT, Marolleau JP, Sacconi S, Garcin I, Lacassagne MN, Robert I, Ternaux B et al (2005) Normal growth and regenerating ability of myoblasts from unaffected muscles of facioscapulohumeral muscular dystrophy patients. Gene Ther 12:1651–1662

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li J, Qiao C, Chen C, Hu P, Zhu X, Zhou L et al (2008) A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 15:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57:319–331

    Article  CAS  PubMed  Google Scholar 

  • Wells DJ (2019) What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil 40:141–150

    Article  PubMed  Google Scholar 

  • Winder SJ, Gibson TJ, Kendrick-Jones J (1995) Dystrophin and utrophin: the missing links! FEBS Lett 369:27–33

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yang Z, Liu Q, Wang Y (2010) In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 18:835–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H et al (2015) Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe D, Feldman M (1965) The formation of hybrid multinucleated muscle fibers from myoblasts of different genetic origin. Dev Biol 11:300–317

    Article  CAS  PubMed  Google Scholar 

  • Yao SN, Kurachi K (1993) Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 105:957–963

    Article  PubMed  Google Scholar 

  • Yokota T, Lu QL, Morgan JE, Davies KE, Fisher R, Takeda S, Partridge TA (2006) Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 119:2679–2687

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S et al (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Skuk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skuk, D. (2024). Clinical Trials of Cell Therapy and Regenerative Medicine in Muscular Dystrophies. In: Haider, K.H. (eds) Handbook of Stem Cell Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-7119-0_17

Download citation

Publish with us

Policies and ethics

Navigation