DNA-Based Cryptography

  • Chapter
  • First Online:
A Nature-Inspired Approach to Cryptology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1122))

  • 126 Accesses

Abstract

This chapter introduces DNA-based cryptography and explores cryptographic protocols utilizing DNA’s biological principles and molecular structures. The four-nucleotide alphabet’s encoding and decoding properties are numerically evaluated using real-world data. Mathematical structures behind DNA encoding and decoding, error rates, correction mechanisms, potential vulnerabilities, and ethical considerations are discussed. Trade-offs between security, scalability, and computational efficiency are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. L.M. Adleman, Molecular computation of solutions to combinatorial problems 266(5187), 1021–1024 (1994)

    Google Scholar 

  2. Q. Liu et al., DNA computing on surfaces 403(6766), 175–179 (2000)

    Google Scholar 

  3. L. Karl, DNA computing: arrival of biological mathematics 19(2), 9–22 (1997)

    Google Scholar 

  4. G. Manganaro, J.P. de Gyvez, DNA computing based on chaos, in Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97) (IEEE) (1997)

    Google Scholar 

  5. M.K. Das, H.-K. Dai, A survey of DNA motif finding algorithms 8(S7) (2007)

    Google Scholar 

  6. D. Boneh et al., On the computational power of DNA 71(1-3), 79–94 (1996)

    Google Scholar 

  7. R.M. Idury, M.S. Waterman, A new algorithm for DNA sequence assembly 2(2), 291–306 (1995)

    Google Scholar 

  8. P.W.K. Rothemund et al., Algorithmic self-assembly of DNA sierpinski triangles 2(12), e424 (2004)

    Google Scholar 

  9. Z. Zhang et al., A greedy algorithm for aligning DNA sequences 7(1-2), 203–214 (2000)

    Google Scholar 

  10. Y. Dong, F. Sun, Z. **, Q. Ouyang, L. Qian, DNA storage: research landscape and future prospects 7(6), 1092–1107 (2020)

    Google Scholar 

  11. Z. Ezziane, DNA computing: applications and challenges 17(2), R27–R39 (2005)

    Google Scholar 

  12. Q. Ma, C. Zhang, M. Zhang, D. Han, W. Tan, DNA computing: principle, construction, and applications in intelligent diagnostics 2(11) (2021)

    Google Scholar 

  13. L. Organick, S.D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M.Z. Racz, G. Kamath, P. Gopalan, B. Nguyen, C.N. Takahashi, S. Newman, H.-Y. Parker, C. Rashtchian, K. Stewart, G. Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, K. Strauss, Random access in large-scale DNA data storage 36(3), 242–248 (2018)

    Google Scholar 

  14. S. Shah, A.K. Dubey, J. Reif, Programming temporal DNA barcodes for single-molecule fingerprinting 19(4), 2668–2673 (2019)

    Google Scholar 

  15. A. Sharonov, R.M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes 103(50), 18911–18916 (2006)

    Google Scholar 

  16. X. Song, A. Eshra, C. Dwyer, J. Reif, Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement 7(45), 28130–28144 (2017)

    Google Scholar 

  17. G. Seelig, D. Soloveichik, D.Y. Zhang, E. Winfree, Enzyme-free nucleic acid logic circuits 314(5805), 1585–1588 (2006)

    Google Scholar 

  18. C. Bancroft, T. Bowler, B. Bloom, C.T. Clelland, Long-term storage of information in DNA 293(5536), 1763–1765 (2001)

    Google Scholar 

  19. L.M. Adleman, Computing with DNA 279(2), 54–61 (1998)

    Google Scholar 

  20. L. Ceze, J. Nivala, K. Strauss, Molecular digital data storage using DNA 20(8), 456–466 (2019)

    Google Scholar 

  21. F. Akram, I. ul Haq, H. Ali, A.T. Laghari, Trends to store digital data in DNA: an overview 45(5), 1479–1490 (2018)

    Google Scholar 

  22. N. Roquet, S.P. Bhatia, S.A. Flickinger, S. Mihm, M.W. Norsworthy, D. Leake, H. Park, DNA-based data storage via combinatorial assembly (2021)

    Google Scholar 

  23. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, E. Birney, Towards practical, high-capacity, low-maintenance information storage in synthesized DNA 494(7435), 77–80 (2013)

    Google Scholar 

  24. C.K. Lim, J.W. Yeoh, A.A. Kunartama, W.S. Yew, C.L. Poh, A biological camera that captures and stores images directly into DNA 14(1) (2023)

    Google Scholar 

  25. I. Rebrova, Synthetic DNA-based data storage devices: The birth of the idea and the first publications 41(4, p. 666) (2020)

    Google Scholar 

  26. A. Extance, How DNA could store all the world’s data 537(7618), 22–24 (2016)

    Google Scholar 

  27. G.M. Skinner, K. Visscher, M. Mansuripur, Biocompatible writing of data into DNA 1(1), 17–21 (2007)

    Google Scholar 

  28. E. Yong, Synthetic double-helix faithfully stores shakespeare’s sonnets (2013)

    Google Scholar 

  29. D. Limbachiya, V. Dhameliya, M. Khakhar, M.K. Gupta, On optimal family of codes for archival DNA storage, in 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA) (IEEE) (2015)

    Google Scholar 

  30. D. Heider, A. Barnekow, DNA-based watermarks using the DNA-crypt algorithm 8(1) (2007)

    Google Scholar 

  31. Y. Xu, Z. Li, CRISPR-cas systems: overview, innovations and applications in human disease research and gene therapy 18, 2401–2415 (2020)

    Google Scholar 

  32. B. Roy, G. Rakshit, P. Singha, A. Majumder, D. Datta, An improved symmetric key cryptography with DNA based strong cipher, in 2011 International Conference on Devices and Communications (ICDeCom) (IEEE) (2011)

    Google Scholar 

  33. M. Lu, X. Lai, G. **ao, L. Qin, Symmetric-key cryptosystem with DNA technology 50(3), 324–333 (2007)

    Google Scholar 

  34. X. Lai, M. Lu, L. Qin, J. Han, X. Fang, Asymmetric encryption and signature method with DNA technology 53(3), 506–514 (2010)

    Google Scholar 

  35. A. Gehani et al., DNA-based cryptography, in Aspects of Molecular Computing. Lecture Notes in Computer Science, ed. by N. Jonoska et al., vol. 2950 (Springer, Berlin), pp. 167–188 (2003)

    Google Scholar 

  36. A.K. Verma et al., DNA cryptography: a novel paradigm for secure routing in mobile ad hoc networks (MANETs) 11(4), 393–404 (2008)

    Google Scholar 

  37. G. Jacob, DNA based cryptography: an overview and analysis 3(1), 36 (2013)

    Google Scholar 

  38. O. Tornea, M.E. Borda, DNA cryptographic algorithms, in IFMBE Proceedings (Springer, Berlin), pp. 223–226 (2009)

    Google Scholar 

  39. G. Paun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms (Springer Science & Business Media) (2005)

    Google Scholar 

  40. J. Chen, A DNA-based, biomolecular cryptography design, in 2003 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3 (IEEE), pp. III–III (2003)

    Google Scholar 

  41. S.T. Amin, M. Saeb, S. El-Gindi, A DNA-based implementation of yaea encryption algorithm, in Computational Intelligence, pp. 120–125 (2006)

    Google Scholar 

  42. A. Khalifa, A. Atito, High-capacity DNA-based steganography, in 2012 8th International Conference on Informatics and Systems (INFOS) (IEEE), pp. BIO–76 (2012)

    Google Scholar 

  43. T.H. LaBean, E. Winfree, J.H. Reif, Experimental progress in computation by self-assembly of DNA tilings (2000)

    Google Scholar 

  44. P.C. Wong, K.-K. Wong, H. Foote, Organic data memory using the DNA approach 46(1), 95–98 (2003)

    Google Scholar 

  45. M. Mondal, K.S. Ray, DNA linear block codes: generation, error-detection and error-correction of DNA codeword (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishir Kumar Shandilya .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shandilya, S.K., Datta, A., Nagar, A.K. (2023). DNA-Based Cryptography. In: A Nature-Inspired Approach to Cryptology. Studies in Computational Intelligence, vol 1122. Springer, Singapore. https://doi.org/10.1007/978-981-99-7081-0_4

Download citation

Publish with us

Policies and ethics

Navigation